Skip to main content
Log in

In-Situ Synthesis of Cu/Cr-Al2O3 Nanocomposite by Mechanical Alloying and Heat Treatment

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this article, a novel method has been used to prepare a copper matrix nanocomposite containing Cu-10 wt pct Cr-10 wt pct Al2O3 by heat treatment of the mechanically activated Cu, Al, and Cr2O3 powder mixture. Structural evolutions were investigated using the X-ray diffraction (XRD) technique. The microstructure of samples was examined using scanning electron microscopy (SEM). It was found that during the milling process, Cu(Al) solid solution and Cu9Al4 phase were formed as the intermediate products, and therefore, Al activity was decreased. Hence, the reduction of Cr2O3 with Al was prevented during the ball milling stage. Further heat treatment carried out under argon atmosphere at 900 °C for 8 hours resulted in completion of Cr2O3 reduction by Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. FRITSCH P6 is a trademark of Fritsch GmbH Company, Idar-Oberstein, Germany.

  2. OXFORD INSTRUMENTS is a trademark of the Oxford Instruments plc Company, Abingdon, Oxfordshire, United Kingdom.

  3. PHILIPS is a trademark of FEI Company, Hillsboro, OR.

References

  1. S.C. Tjong and K.C. Lau: Mater. Sci. Eng. A, 2000, vol. 282, pp. 183–86.

    Article  Google Scholar 

  2. J. Lee, J.Y. Jung, E.-S. Lee, W.J. Park, S. Ahn, and N.J. Kim: Mater. Sci. Eng. A, 2000, vol. 277, pp. 274–83.

    Article  Google Scholar 

  3. Y.-F. Lee and S.-L. Lee: Scripta Mater., 1999, vol. 7, pp. 773–78.

    Google Scholar 

  4. D. Raabe and U. Hangen: Acta Mater., 1996, vol. 44, pp. 953–61.

    Article  CAS  Google Scholar 

  5. C. Biselli and D.G. Morris: Acta Metall. Mater., 1996, vol. 44, pp. 493–504.

    CAS  Google Scholar 

  6. S.I. Hong, M.A. Hill, Y. Sakai, J.T. Wood, and J.D. Embury: Acta Metall. Mater., 1995, vol. 43, pp. 3313–23.

    Article  CAS  Google Scholar 

  7. Y. Jin, K. Adachi, T. Takeuchi, and H.G. Suzuki: Appl. Phys. Lett., 1996, vol. 69, pp. 1391–92.

    Article  CAS  ADS  Google Scholar 

  8. C. Suryanarayana: Prog. Mater. Sci., 2001, vol. 46, pp. 1–184.

    Article  CAS  Google Scholar 

  9. S. Sheibani, A. Ataie, and S. Heshmati-Manesh: J. Alloys Compd., 2008, vol. 455, pp. 447–53.

    Article  CAS  Google Scholar 

  10. G.B. Schaffer and P.G. McCormick: Metall. Trans. A, 1991, vol. 22A, pp. 3019–24.

    CAS  ADS  Google Scholar 

  11. S. Sheibani, M. Khakbiz, and M. Omidi: J. Alloys Compd., 2009, vol. 477, pp. 683–87.

    Article  CAS  Google Scholar 

  12. N. Parvin, R. Assadifard, P. Safarzadeh, S. Sheibani, and P. Marashi: Mater. Sci. Eng. A, 2008, vol. 492, pp. 134–40.

    Article  Google Scholar 

  13. P. Matteazzi and G. Le Caer: J. Am. Ceram. Soc., 1992, vol. 75, pp. 2749–55.

    Article  CAS  Google Scholar 

  14. J.L. Guichard, O. Tillement, and A. Mocellin: J. Eur. Ceram. Soc., 1998, vol. 18, pp. 1143–52.

    Article  Google Scholar 

  15. D.R. Gaskell: Introduction to Metallurgical Thermodynamics, 3rd ed., McGraw-Hill, New York, NY, 1981.

    Google Scholar 

  16. L. Takacs: Prog. Mater. Sci., 2002, vol. 47, pp. 355–461.

    Article  CAS  Google Scholar 

  17. D.Y. Ying and D.L. Zhang: Mater. Sci. Eng. A, 2003, vol. 361, pp. 321–30.

    Article  Google Scholar 

  18. G.K. Williamson and W.H. Hall: Acta Metall., 1953, vol. 1, pp. 22–31.

    Article  CAS  Google Scholar 

  19. H. Lipson and H. Steeple: Interpretation of X-ray Powder Diffraction Patterns, Macmillan, London, 1970.

    Google Scholar 

  20. J.B. Correia, H.A. Davies, and C.M. Sellars: Acta Mater., 1997, vol. 45, pp. 177–90.

    Article  CAS  Google Scholar 

  21. V.A. Lubarda: Mech. Mater., 2003, vol. 35, pp. 53–68.

    Article  Google Scholar 

  22. D.Y. Ying and D.L. Zhang: Mater. Sci. Eng. A., 2000, vol. 286, pp. 152–56.

    Article  Google Scholar 

  23. S.J. Dong, Y. Zhou, Y.W. Shi, and B.H. Chang: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1275–80.

    Article  CAS  Google Scholar 

  24. D. Das, P.P. Chatterjee, I. Manna, and S.K. Pabi: Scripta Mater., 1999, vol. 41, pp. 861–66.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The financial support of this work by the Iranian Nanotechnology Initiative Council is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Sheibani.

Additional information

Manuscript submitted July 23, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheibani, S., Ataie, A. & Heshmati-Manesh, S. In-Situ Synthesis of Cu/Cr-Al2O3 Nanocomposite by Mechanical Alloying and Heat Treatment. Metall Mater Trans A 41, 2606–2612 (2010). https://doi.org/10.1007/s11661-010-0281-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0281-8

Keywords

Navigation