Skip to main content
Log in

Hot explosive consolidation of W-Ti alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

High-density (98 pct TD) 95W-5Ti (wt pct) alloys have been fabricated by a combustion-synthesis-assisted hot explosive consolidation (CSA-HEC) technique. In the current procedure, a W + Ti powder compact is preheated by the heat released by a Ti + C exothermic combustion synthesis reaction and subsequently consolidated by pressure waves generated by the detonation of an explo-sive. The amounts of explosive charge, sample configuration, and molar ratio of exothermic material to sample were found to affect the degree of consolidation. Auxiliary temperature measurements were performed to determine the precompaction thermal history of the sample to obtain the optimum delay time for consolidation. As observed with scanning electron microscopy (SEM), the CSA-HEC microcomposites consist of W particles surrounded by a partially discontinuous Ti-rich matrix. Trans-mission electron microscopy (TEM) was also used to further characterize the W/Ti interfacial region. The pertinent features of the technique as well as those of the product microstructures are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.S. Magness and T.G. Farrand:Proc. 1990 Army Science Conf, Durham, NC, 1990, Army Science Board, Washington D.C., 1990, vol. 2, pp. 149–64.

    Google Scholar 

  2. T.B. Massalski: inBinary Alloy Phase Diagrams, 2nd ed., H. Okamoto, P.R. Subramanian, and L. Kacprzak, eds., William W. Scott, New York, NY, 1990.

    Google Scholar 

  3. B.H. Rabin, A. Bose, and R.M. German:Int. J. Powder Metall, 1989, vol. 25, pp. 21–27.

    CAS  Google Scholar 

  4. G.C. Kuczynski:Sintering Processes, Plenum Press, New York, NY, 1980.

    Google Scholar 

  5. D.W. Smith: inPowder Metallurgy, Applications, Advances, and Limitations, E. Klar, ed., ASM, Metals Park, OH, 1983.

    Google Scholar 

  6. R.M. German:Liquid Phase Sintering, Plenum Press, New York, NY, 1985.

    Google Scholar 

  7. Shock Waves and High-Strain-Rate Phenomena in Metals: Concepts and Applications, M.A. Meyers and L.E. Murr, eds., Plenum Press, New York, NY, 1981.

    Google Scholar 

  8. Metallurgical Applications of Shock Wave and High Strain Rate Phenomena, L.E. Murr, K.P. Staudhammer, and M.A. Meyers, eds., Marcel Dekker, Inc., New York, NY, 1986.

    Google Scholar 

  9. R.R. Boade:J. Appl. Phys., 1969, vol. 40, pp. 3781–85.

    Article  CAS  Google Scholar 

  10. A. Cross:Iron Age, 1959, vol. 184, pp. 48–50.

    CAS  Google Scholar 

  11. V.G. Gorobtsov and O.V. Roman:Int. J. Powder Metall, 1975, vol. 11, pp. 55–60.

    CAS  Google Scholar 

  12. S.S. Batsanov:Effects of Explosives on Materials: Modifications and Synthesis under High-Pressure Shock Compression, Springer-Verlag, New York, NY, 1994, p. 49.

    Google Scholar 

  13. A.K. Bhalla:Trans. Powder Metall. Assoc. Ind., 1980, vol. 7, pp. 1- 8.

    Google Scholar 

  14. N.C. Birla and W. Krishnaswamy:Powder Metall, 1981, vol. 24, pp. 203–09.

    CAS  Google Scholar 

  15. S.L. Wang, M.A. Meyers, and A. Szeket:J. Mater. Sci., 1988, vol. 23, pp. 1786–1804.

    Article  CAS  Google Scholar 

  16. A. Ferreira, M.A. Meyers, N.N. Thadhani, S.N. Chang, and J.R. Kough:Metall. Trans. A, 1991, vol. 22A, pp. 685–95.

    CAS  Google Scholar 

  17. M. Yoshida, Y. Yoshioka, Y. Kimura, H. Hirabayashi, A.B. Sawaoka, and R.A. Puemmer:Aerospace, Refractory and Advanced Materials Advances in Powder Metallurgy, Metal Powder Industries Federation, Princeton, NJ, 1991, vol. 6, pp. 199–209.

    Google Scholar 

  18. A.V. Molotkov, A.B. Notkin, D.V. Elagin, V.F. Nesterenko, and A.N. Lazaridi:Fiz. Gor. Vzr., 1991, vol. 27, pp. 117–26.

    CAS  Google Scholar 

  19. S.S. Shang, K. Hokamoto, M.A. Meyers,J. Mater. Sci, 1992, vol. 27, pp. 5470–76.

    Article  CAS  Google Scholar 

  20. T. Taniguchi and K. Kondo:Adv. Ceram. Mater., 1988, vol. 3, pp. 399–402.

    CAS  Google Scholar 

  21. J.S. Rhinehart and J. Pearson:Explosive Working of Metals, MacMillan Company, New York, NY, 1963, p. 257.

    Google Scholar 

  22. Proc. DARPA/ARMY SHS Symp., MTL-SP-87-3, K.A. Gabriel, S.G. Wax, and J.W. McCauley, eds., Daytona Beach, FL, Oct. 1985, U.S. Govt. Printing Office, Washington, D.C., 1987.

    Google Scholar 

  23. Z.A. Munir:Cer. Bull, 1988, vol. 67, pp. 342–49.

    CAS  Google Scholar 

  24. Combustion and Plasma Synthesis of High-Temperature Materials, Z.A. Munir and J.B. Holt, eds., VCH Publishers, Inc., New York, NY, 1990.

    Google Scholar 

  25. A. Niiler, L.J. Kecskes, T. Kottke, P.H. Netherwood, and R.F. Benck :Explosive Consolidation of Combustion Synthesized Ceramics: TiC and TiB2, BRL-TR-2951, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, Dec. 1988.

  26. M.P. Bondar and V.F. Nesterenko:Fiz. Gor. Vzr., 1991, vol. 27, pp. 103–17.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kecskes, L.J., Hall, I.W. Hot explosive consolidation of W-Ti alloys. Metall Mater Trans A 26, 2407–2414 (1995). https://doi.org/10.1007/BF02671254

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02671254

Keywords

Navigation