Skip to main content
Log in

Deformation behavior of Zr3Al-Nb alloys II: Indentation creep studies

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The high-temperature mechanical properties of Zr3Al, Zr3Al-3Nb, and Zr3Al-10Nb alloys were assessed using the indentation hardness method. All three alloys showed negligible creep up to 500 K. Using Sargent and Ashby’s approach, different creep parameters such as stress exponent, activation energy, and activation area were estimated. Using the data generated in the present study and those available in the literature, a deformation creep curve was developed. The relationship between hardness and temperature in the high-temperature region can be expressed in terms of an Arrhenious equation. The activation energy estimated from this relationship was found to be in good agreement with that obtained from the indentation creep curve. On comparing the creep behavior of Zr3Al-Nb alloys with some other intermetallics, it was observed that Zr3Al-based intermetallics have better creep resistance compared to other intemetallics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.R. Petty: in Techniques of Metal Research, R.F. Bunshah, ed., Interscience Publishers, New York, NY, 1971, vol. 5, part 5, p. 158.

    Google Scholar 

  2. E.R. Petty: Metallurgica, 1957, vol. 56, p. 231.

    CAS  Google Scholar 

  3. G.E. Lucas and C. Pendleton: J. Nucl. Mater., 1981, vol. 103, p. 1539.

    Article  Google Scholar 

  4. B.W. Mott: Microindentation Hardness Testing, Butterworth and Co., London, 1956, p. 157.

    Google Scholar 

  5. D. Tabor: The Hardness of Metals, Clarendon Press, Oxford, United Kingdom, 1951, p. 1.

    Google Scholar 

  6. H. O’Neill: Hardness Measurement of Metals and Alloys, Chapman and Hall, London, 1967, p. 153.

    Google Scholar 

  7. E.M. Schulson: J. Nucl. Mater., 1977, vol. 66, p. 322.

    Article  CAS  Google Scholar 

  8. E.M. Schulson, M.L. Swanson, and S.R. MacEwen: Phil. Mag. A. 1978, vol. 37, p. 575.

    CAS  Google Scholar 

  9. E.M. Schulson: in Intermetallic Compounds, J.H. Westbrook and R.L. Fleischer, eds., John Wiley & Sons Ltd., New York, NY, 1994, vol. 2, p. 133.

    Google Scholar 

  10. R. Tewari, G.K. Dey, R.K. Fotedar, T.R.G. Kutty, and N. Prabhu: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 189–203.

    CAS  Google Scholar 

  11. P.M. Sargent and M.F. Ashby: Mater. Sci. Technol., 1992, vol. 8, p. 594.

    CAS  Google Scholar 

  12. H.J. Frost and M.F. Ashby: Deformation Mechanism Maps, Pregamon Press, Oxford, United Kingdom, 1982, p. 1.

    Google Scholar 

  13. W.B. Li, J.L. Henshall, R.M. Hooper, and K.E. Easterling: Acta Metall. Mater., 1991, vol. 39, p. 3099.

    Article  CAS  Google Scholar 

  14. J. Larson-Badse: Trans. Jpn. Inst. Met., 1986, vol. 9, p. 132.

    Google Scholar 

  15. A.R. Causey, V. Fidleris, H.E. Rosinger, E.M. Schulson, and V.F. Urbanic: in Zirconium in Nuclear Industry, ASTM-STP-633, A.L. Lowe, Jr. and G.W. Parry, eds., ASTM, Philadelphia, PA, 1977, p. 137.

    Google Scholar 

  16. B. Reppich: in Materials Science and Technology: A Comprehensive Treatment, R.W. Cahn, P. Hassan, and E.J. Kramer, eds., VCH Publishers, Weiheim, 1994, p. 311.

    Google Scholar 

  17. E.M. Schulson and D.B. Graham: Acta Metall., 1976, vol. 24, p. 615.

    Article  CAS  Google Scholar 

  18. T.R.G. Kutty: Ph.D. Thesis, Indian Institute of Science, Bangalore, 1996.

    Google Scholar 

  19. Y.A. Chang, L.M. Pike, C.T. Liu, A.R. Bilbey, and D.D. Stone: Intermetallics, 1993, vol. 1, p. 107.

    Article  CAS  Google Scholar 

  20. R. Lagenborg: Int. Metall. Rev., 1972, vol. 11, p. 120.

    Google Scholar 

  21. T.O. Mulhearn and D. Tabor: J. Inst. Met., 1960–61, vol. 89, p. 7.

    CAS  Google Scholar 

  22. J. Pomey, A. Royez, and J.P. Georges: Rev. Metall., 1956, vol. 56, p. 215.

    Google Scholar 

  23. T.R.G. Kutty, C. Ganguly, and D.H. Sastry: Scripta Mater., 1996, vol. 34, p. 1833.

    Article  CAS  Google Scholar 

  24. A.G. Atkin: in Science of Hardness Testing and Its Research Applications, J.H. Westbrook and H. Conard, eds., ASM, Metals Park, OH, 1971, p. 233.

    Google Scholar 

  25. J. Weertman: J. Appl. Phys., 1957, vol. 28, p. 362.

    Article  CAS  Google Scholar 

  26. C.R. Barrett and W.D. Nix: Acta Metall., 1965, vol. 13, p. 1247.

    Article  Google Scholar 

  27. R. Tewari, G.K. Dey, S. Banerjee, R.K. Fotedar, and N. Prabhu: Int. Conf. on Advances in Materials & Materials Processing (ICAMMP-2002), Indian Institute of Technology, Kharagpur, 2002, p. 417.

    Google Scholar 

  28. M.A. Morris: Phil. Mag. A, 1992, vol. 65, p. 943.

    CAS  Google Scholar 

  29. E. Arzt and D.S. Wilkinson: Acta Metall. Mater., 1986, vol. 34, p. 1893.

    Article  CAS  Google Scholar 

  30. E. Arzt and D.S. Wilkinson: Acta Metall. Mater., 1981, vol. 29, p. 519.

    Google Scholar 

  31. E. Arzt: Res. Mechanica, 1991, vol. 31, p. 399.

    Google Scholar 

  32. G. Golzalez-Doncel and O.D. Sherby: Acta Metall. Mater., 1993, vol. 41, p. 2797.

    Article  Google Scholar 

  33. P. Holdway and A.E. Staton-Bevan: J. Mater. Sci., 1986, vol. 21, p. 2843.

    Article  CAS  Google Scholar 

  34. D.L. Douglas: The Metallurgy of Zirconium, International Atomic Energy Agency, Vienna, 1971.

    Google Scholar 

  35. Y.V. Milmana, D.B. Miracleb, S.I. Chugunovaa, I.V. Voskoboinika, N.P. Korzhovaa, T.N. Legkayaa, and Y.N. Podrezova: Intermetallics, 2001, vol. 9, p. 839.

    Article  Google Scholar 

  36. R.S. Sundar, T.R.G. Kutty, and D.H. Sastry: Intermetallics, 2000, vol. 8, p. 427.

    Article  CAS  Google Scholar 

  37. T.E. Mitchell and A. Misra: Mater. Sci. Eng., 1999, vol. A261, p. 106.

    CAS  Google Scholar 

  38. J. Duszczyk, L.Z. Zhuang, and L. Buekenhout: J. Mater. Sci., 1999, vol. 34, p. 1557.

    Article  CAS  Google Scholar 

  39. T. Takahashi and D.C. Dunand: Mater. Sci. Eng., 1995, vols. A192–A93, p. 195.

    Google Scholar 

  40. C.H. Henager, Jr., R.E. Jacobson, and S.M. Bruemmer: Mater. Sci. Eng., 1992, vol. A153, p. 416.

    CAS  Google Scholar 

  41. T.G. Nieh and J. Wadsworth: Scripta Metall., 1990, vol. 24, p. 1489.

    Article  CAS  Google Scholar 

  42. G. Sharma, R.V. Ramanujan, T.R.G. Kutty, and G.P. Tewari: Mater. Sci. Eng., 2000, vol. A278, p. 106.

    CAS  Google Scholar 

  43. R.S. Sundar, T.R.G. Kutty, and D.H. Sastry: Intermetallics, 2000, vol. 8, p. 427.

    Article  CAS  Google Scholar 

  44. J.A. Jimenez and G. Frommeyer: Mater. Sci. Eng., 1996, vol. A220, p. 93.

    CAS  Google Scholar 

  45. Y.L. Jeng, E.J. Lavernia, R.M. Hayes, and J. Wolfenstine: Mater. Sci. Eng., 1995, vols. A192–A93, p. 240.

    Google Scholar 

  46. C.P. Reip and G. Sauthoff: Intermetallics, 1996, vol. 4, p. 377.

    Article  CAS  Google Scholar 

  47. J. Lapin: Intermetallics, 1999, vol. 7, p. 599.

    Article  CAS  Google Scholar 

  48. T.H. Yu, W.J. Yue, and C.H. Koo: Mater. Chem. Phys., 1997, vol. 50, p. 238.

    Article  CAS  Google Scholar 

  49. T.K. Nandy and D. Banerjee: Intermetallics, 2000, vol. 8, p. 1269.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tewari, R., Dey, G.K., Kutty, T.R.G. et al. Deformation behavior of Zr3Al-Nb alloys II: Indentation creep studies. Metall Mater Trans A 35, 205–216 (2004). https://doi.org/10.1007/s11661-004-0121-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0121-9

Keywords

Navigation