Skip to main content
Log in

Response of hydrothermal vent vestimentiferan Riftia pachyptila to differences in habitat chemistry

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Vestimentiferan tubeworms, which rely on intracellular sulfide-oxidizing autotrophic bacteria for organic carbon, flourish at deep-sea hydrothermal vents despite the erratic nature of their habitat. To assess the degree to which differences in habitat chemistry (sulfide, pH/CO2) might impact host and symbiont metabolic activity, Riftia pachyptila tubeworms were collected from habitats with low (H2S < 0.0001 mM) and high (up to 0.7 mM) sulfide concentrations. The elemental sulfur content of the symbiont-containing trophosome organ was lower in specimens collected from the low-sulfide site. Symbiont abundance, RubisCO activity, and trophosome carbon fixation rates were not significantly different for individuals collected from low- versus high-sulfide habitats. Carbonic anhydrase activities were higher in the anterior gas exchange organs of R. pachyptila from the low-sulfide habitat. Despite large differences in habitat chemistry, symbiont abundance and autotrophic potential were consistent, while the host appears to tailor carbonic anhydrase activity to environmental CO2 availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arp AJ, Childress JJ (1983) Sulfide binding by the blood of the hydrothermal vent tube worm Riftia pachyptila. Science 219:295–297

    Article  CAS  Google Scholar 

  • Arp AJ, Childress JJ, Vetter RD (1987) The sulphide-binding protein in the blood of the vestimentiferan tube-worm, Riftia Pachyptila, is the extracellular haemoglobin. J Exp Biol 128:139–158

    CAS  Google Scholar 

  • Bright M, Keckeis H, Fisher CR (2000) An autoradiographic examination of carbon fixation, transfer and utilization in the Riftia pachyptila symbiosis. Mar Biol 136:621–632

    Article  Google Scholar 

  • Carney SL, Flores JF, Orobona KM, Butterfield DA, Fisher CR, Schaeffer SW (2007) Environmental differences in hemoglobin gene expression in the hydrothermal vent tubeworm, Ridgeia piscesae. Compar Biochem Physiol B Biochem Mol Biol 146:326–337

    Article  Google Scholar 

  • Cavanaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterbury JB (1981) Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213:340–342

    Article  CAS  Google Scholar 

  • Childress JJ, Fisher CR, Favuzzi JA, Kochevar RE, Sanders NK, Alayse AM (1991a) Sulfide-driven autotrophic balance in the bacterial symbiont-containing hydrothermal vent tubeworm, Riftia pachyptila Jones. Biol Bull 180:135–153

    Article  Google Scholar 

  • Childress JJ, Fisher CR, Favuzzi JA, Sanders NK (1991b) Sulfide and carbon dioxide uptake by the hydrothermal vent clam, Calyptogena magnifica and its chemoautotrophic symbionts. Physiol Zool 64:1444–1470

    CAS  Google Scholar 

  • Childress JJ, Lee RW, Sanders NK, Felbeck H, Oros DR, Toulmond A, Desbruyeres D, Kennicutt MC, Brooks J (1993) Inorganic carbon uptake in hydrothermal vent tubeworms facilitated by high environmental pCO2. Nature 362:147–149

    Article  CAS  Google Scholar 

  • Dobrinski KP, Boller AJ, Scott KM (2010) Expression and function of four carbonic anhydrase homologs in the deep-sea chemolithoautotroph Thiomicrospira crunogena. Appl Environ Microb 76:3561–3567

    Article  CAS  Google Scholar 

  • Felbeck H (1981) Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science 213:336–338

    Article  CAS  Google Scholar 

  • Fisher CR, Childress JJ (1984) Substrate oxidation by trophosome tissue from Riftia pachyptila Jones (Phylum Pogonophora). Mar Biol Lett 5:171–183

    CAS  Google Scholar 

  • Fisher CR, Childress JJ, Arp AJ, Brooks JM, Distel D, Favuzzi JA, Macko SA, Newton A, Powell MA, Somero GN, Soto T (1988a) Physiology, morphology, and biochemical composition of Riftia pachyptila at Rose Garden in 1985. Deep-Sea Res 35:1745–1758

    Article  Google Scholar 

  • Fisher CR, Childress JJ, Sanders NK (1988b) The role of vestimentiferan hemoglobin in providing an environment suitable for chemoautotrophic sulfide-oxidizing endosymbionts. Symbiosis 5:229–246

    CAS  Google Scholar 

  • Fisher CR, Childress JJ, Minnich E (1989) Autotrophic carbon fixation by the chemoautotrophic symbionts of Riftia pachyptila. Biol Bull 177:372–385

    Article  CAS  Google Scholar 

  • Flores JF, Fisher CR, Carney SL, Green BN, Freytag JK, Schaeffer SW, Royer WE Jr (2005) Sulfide binding is mediated by zinc ions discovered in the crystal structure of a hydrothermal vent tubeworm hemoglobin. Proc Natl Acad Sci 102:2713–2718

    Article  CAS  Google Scholar 

  • Girguis PR, Childress JJ (2006) Metabolite uptake, stoichiometry and chemoautotrophic function of the hydrothermal vent tubeworm Riftia pachyptila: responses to environmental variations in substrate concentrations and temperature. J Exp Biol 209:3516–3528

    Article  CAS  Google Scholar 

  • Goffredi SK, Childress JJ, Desaulniers NT, Lee RW, Lallier FH, Hammond D (1997) Inorganic carbon acquisition by the hydrothermal vent tubeworm Riftia pachyptila depends upon high external P-CO2 and upon proton-equivalent ion transport by the worm. J Exp Biol 200:883–896

    CAS  Google Scholar 

  • Goffredi SK, Girguis PR, Childress JJ, Desaulniers NT (1999) Physiological functioning of carbonic anhydrase in the hydrothermal vent tubeworm Riftia pachyptila. Biol Bull 196:257–264

    Article  CAS  Google Scholar 

  • Govenar B, LeBris N, Gollner S, Glanville J, Aperghis AB, Hourdez S, Fisher CR (2005) Epifaunal community structure associated with Riftia pachyptila aggregations in chemically different hydrothermal vent habitats. Mar Ecol Prog Ser 305:67–77

    Article  Google Scholar 

  • Halanych K, Lutz RA, Vrijenhoel RC (1998) Evolutionary origins and age of vestimentiferan tube-worms. Cah Biol Mar 39:355–358

    Google Scholar 

  • Harmer TL, Rotjan RD, Nussbaumer AD, Bright M, Ng AW, DeChaine EG, Cavanaugh CM (2008) Free-living tube worm endosymbionts found at deep-sea vents. Appl Environ Microbiol 74:3895–3898

    Article  CAS  Google Scholar 

  • Javor BJ, Wilmot DB, Vetter RD (1990) pH—Dependent metabolism of thiosulfate and sulfur globules in the chemolithotrophic marine bacterium Thiomicrospira crunogena. Arch Microbiol 154:231–238

    Article  CAS  Google Scholar 

  • Johnson KS, Childress JJ, Beehler CL (1988) Short term temperature variability in the Rose Garden hydrothermal vent field. Deep-Sea Res 35:1711–1722

    Article  Google Scholar 

  • Kochevar RE, Govind NS, Childress JJ (1993) Identification and characterization of two carbonic anhydrases from the hydrothermal vent tubeworm Riftia pachyptila Jones. Molec Mar Biol Biotech 2:10–19

    CAS  Google Scholar 

  • Laurent MCZ, Gros O, Brulport JP, Gaill F, Le Bris N (2009) Sunken wood habitat for thiotrophic symbiosis in mangrove swamps. Mar Environ Res 67:83–88

    Article  CAS  Google Scholar 

  • Le Bris N, Sarradin PM, Pennec S (2001) A new deep-sea probe for in situ pH measurement in the environmental of hydrothermal vent biological communitites. Deap-Sea Res I 48:1941–1951

    Article  CAS  Google Scholar 

  • Le Bris N, Govenar B, Le Gall C, Fisher CR (2006) Variability of physico-chemical conditions in 9 degrees 50′N EPR diffuse flow vent habitats. Mar Chem 98:167–182

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 −DDCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Luther GW, Rozan TF, Taillefert M, Nuzzio DB, Di Meo C, Shank TM, Lutz RA, Cary SC (2001) Chemical speciation drives hydrothermal vent ecology. Nature 410:813–816

    Article  CAS  Google Scholar 

  • McMullin ER, Hourdez S, Schaeffer SW, Fisher CR (2000) Absence of cospeciation in deep-sea vestimentiferan tube worms and their bacterial endosymbionts. Symbiosis 28:1–15

    Google Scholar 

  • Moore TS, Shank TM, Nuzzio DB, Luther Iii GW (2009) Time-series chemical and temperature habitat characterization of diffuse flow hydrothermal sites at 9°50′N East Pacific Rise. Deep Sea Res Part II Top Stud Oceanogr 56:1616–1621

    Article  CAS  Google Scholar 

  • Pflugfelder B, Fisher CR, Bright M (2005) The color of the trophosome: elemental sulfur distribution in the endosymbionts of Riftia pachyptila (Vestimentifera; Siboglinidae). Mar Biol 146:895–901

    Article  CAS  Google Scholar 

  • Robidart JC, Roque A, Song P, Girguis PR (2011) Linking hydrothermal geochemistry to organismal physiology: physiological versatility in Riftia pachyptila from sedimented and basalt-hosted vents. PLoS ONE 6:e21692

    Article  CAS  Google Scholar 

  • Sarrazin J, Robigou V, Juniper SK, Delaney JR (1997) Biological and geological dynamics over four years on a high-temperature sulfide structure at the Juan de Fuca Ridge hydrothermal observatory. Mar Ecol Prog Ser 153:5–24

    Article  Google Scholar 

  • Scott KM, Fisher CR (1995) Physiological ecology of sulfide metabolism in hydrothermal vent and cold seep vesicomyid clams and vestimentiferan tube worms. Amer. Zool. 35:102–111

    CAS  Google Scholar 

  • Scott KM, Fisher CR, Vodenichar JS, Nix ER, Minnich E (1994) Inorganic carbon and temperate requirements for autotrophic carbon fixation by the chemoautotrophic symbionts of the giant hydrothermal vent tube worm, Riftia pachyptila. Physiol Zool 67:617–638

    CAS  Google Scholar 

  • Scott KM, Bright M, Macko SA, Fisher CR (1999) Carbon dioxide use with different affinities by chemoautotrophic endosymbionts of the hydrothermal vent vestimeniferans Riftia pachyptila and Ridgeia piscesae. Mar Biol 135:25–34

    Article  CAS  Google Scholar 

  • Scott KM, Henn-Sax M, Longo D, Cavanaugh CM (2007) Kinetic isotope effect and biochemical characterization of form IA RubisCO from the marine cyanobacterium Prochlorococcus marinus MIT9313. Limnol Oceanogr 52:2199–2204

    Article  CAS  Google Scholar 

  • Shank TM, Fornari DJ, Von Damm KL, Lilley MD, Haymon RM, Lutz RA (1998) Temporal and spatial patterns of biological community development at nascent deep-sea hydrothermal vents (9 degrees 50′N, East Pacific Rise). Deep Sea Res Part II Top Stud Oceanogr 45:415–465

    Article  Google Scholar 

  • Southward EC, Tunnicliffe V, Black M (1995) Revision of the species of Ridgeia from North-East Pacific hydrothermal vents, with a redescription of Ridgeia piscesae Jones (Pogonophora: Obturata = Vestimentifera). Can J Zool 73:282–295

    Article  Google Scholar 

  • Steudel R (2003) Elemental sulfur and sulfur-rich compounds. Top Curr Chem 230:69–78

    Google Scholar 

  • Urcuyo IA, Bergquist DC, MacDonald IR, VanHorn M, Fisher CR (2007) Growth and longevity of the tubeworm Ridgeia piscesae in the variable diffuse flow habitats of the Juan de Fuca Ridge. Mar Ecol Progr Ser 344:143–157

    Article  Google Scholar 

  • VonDamm KL, Lilley MD (2004) Diffuse flow hydrothermal fluids from 9o50′N East Pacific Rise: Origin, evolution and biogeochemical controls. In: Wilcock WSD, DeLong EF, Kelley DS, Baross JA (eds) Subseafloor Biosphere at Mid-Ocean Ridges. American Geophysical Union, Washington, pp 245–268

    Chapter  Google Scholar 

Download references

Acknowledgments

We are extremely grateful to Colleen Cavanaugh for loaning the Capni-Con V for DIC quantification, to Stefan Sievert for inviting us on the FIX’08 research cruise (supported by the National Science Foundation NSF-OCE-0452333 to SS), to the pilots and crews of the R/V Atlantis and HOV ALVIN, as well as to Betty Loraam for assistance with electron microscopy. We are also thankful to the anonymous reviewers for their helpful comments. This work was supported by the University of South Florida and the National Science Foundation (NSF-MCB-0643713 to KMS). The NLB chemical habitat study was supported by Ifremer and the Centre National de la Recherche Scientifique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen M. Scott.

Additional information

Communicated by M. Kühl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, K.M., Boller, A.J., Dobrinski, K.P. et al. Response of hydrothermal vent vestimentiferan Riftia pachyptila to differences in habitat chemistry. Mar Biol 159, 435–442 (2012). https://doi.org/10.1007/s00227-011-1821-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-011-1821-5

Keywords

Navigation