Skip to main content
Log in

Hepatic expression of inflammatory genes and microRNAs in pigs with high “cholesteryl ester transfer protein” (CETP) activity

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Human obesity and obesity-related diseases (ORD) are growing health problems worldwide and represent a major public health challenge. Most of these diseases are complex conditions, influenced by many genes (including microRNAs) and environmental factors. Many metabolic perturbations are associated with obesity; e.g., low levels of high-density lipoproteins (HDL) are high risk factors of cardiovascular events. A number of genetic, lifestyle, and environmental factors have been shown to contribute to the lowering of HDL-cholesterol. One of these factors is cholesteryl ester transfer protein (CETP) promoting the redistribution of cholesteryl esters, triglycerides, and phospholipids between plasma proteins. Moreover, obesity and ORD are often linked with chronic low-grade inflammation leading to insulin resistance and endothelial and microvascular dysfunctions. The aim of this study was to detect differences in the hepatic expression of genes involved in low-grade inflammation and of obesity- and cholesterol-related microRNAs in two mixed breed populations of pigs (Yorkshire-Göttingen minipig, YM and Duroc-Göttingen minipig, DM) including males and females, with extreme phenotypes for CETP activity levels (designated as CETP-high and CETP-low, respectively). Furthermore, breed and gender differences were also investigated. We found significant difference (P < 0.05) in hepatic expression levels of several mRNAs and microRNAs between the CETP-high and -low groups (C5, IL1RN, IL18, and miR-223-5p); between the two mixed breeds (IL1RAP and miR-140-5p); and between gender (APOA1, IL1RN, and FBLN1). Furthermore, when taking breed into account we show that the transcriptional levels of TNF, miR20a, miR33b, and miR130a differed between the two CETP groups. We conclude that increased CETP activity is accompanied by a modest differential hepatic expression of several microRNAs and inflammatory-related genes. Furthermore, our study demonstrates that when modeling the analysis of expression data, it is important to take gender- and breed-specific effects into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abente EJ, Subramanian M, Ramachandran V, Najafi-Shoushtari SH (2015) MicroRNAs in obesity-associated disorders. Arch Biochem Biophys 589:108–119

    Article  PubMed  Google Scholar 

  • Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250

    Article  CAS  PubMed  Google Scholar 

  • Balcells I, Cirera S, Busk PK (2011) Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers. BMC Biotechnol 11:70–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baltimore D, Boldin MP, O’Connel RM, Rao DS, Taganov KD (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9:839–845

    Article  CAS  PubMed  Google Scholar 

  • Banerjee M, Saxena M (2012) Interleukin-1 (IL-1) family of cytokines: role in type-2 diabetes. Clin Chim Acta 413(15–16):1163–1170

    Article  CAS  PubMed  Google Scholar 

  • Barter PJ, Brewer HB, Chapman MJ, Hennekens CH, Rader DJ, Tall AR (2003) Colesteryl ester transfer protein: a novel target for raising HDL and inhibit atherosclerosis. Arterioscler Thromb Vasc Biol 23:160–167

    Article  CAS  PubMed  Google Scholar 

  • Barter PJ, Rye KA (2006) Cholesteryl ester transfer protein (CETP) inhibition as a strategy to reduce cardiovascular risk. J Lipid Res 53:1755–1766

    Article  Google Scholar 

  • Berg AH, Scherer PE (2005) Adipose tissue, inflammation, and cardiovascular disease. Circ Res 96:939–949

    Article  CAS  PubMed  Google Scholar 

  • Busk P (2014) A tool for design of primers for microRNA specific quantitative RT-qPCR. BMC Bioinform 15:29

    Article  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622

    Article  CAS  PubMed  Google Scholar 

  • Christoffersen BØ, Jensen SJ, Ludvigsen TP, Nilsson SK, Grossi AB, Heegaard PM (2015) Age- and sex-associated effects on acute-phase proteins in Göttingen minipigs. Comp Med 65(4):333–341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cortes VA, Busso D, Mardones P, Maiz A, Arteaga A, Nervi F, Rigotti A (2013) Advances in the physiological and pathological implications of cholesterol. Biol Rev Camb Philos Soc 88(4):825–843

    Article  PubMed  Google Scholar 

  • Dawson HD, Loveland JE, Pascal G, Gilbert JG, Uenishi H, Mann KM, Sang Y, Zhang J, Carvalho-Silva D, Hunt T, Hardy M, Hu Z, Zhao SH, Anselmo A, Shinkai H, Chen C, Badaoui B, Berman D, Amid C, Kay M, Lloyd D, Snow C, Morozumi T, Cheng RP, Bystrom M, Kapetanovic R, Schwartz JC, Kataria R, Astley M, Fritz E, Steward C, Thomas M, Wilming L, Toki D, Archibald AL, Bed’Hom B, Beraldi D, Huang TH, Ait-Ali T, Blecha F, Botti S, Freeman TC, Giuffra E, Hume DA, Lunney JK, Murtaugh MP, Reecy JM, Harrow JL, Rogel-Gaillard C, Tuggle CK (2013) Structural and functional annotation of the porcine immunome. BMC Genomics 14:332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dirinck E, Jorens P, Gaal LV (2012) Obesity and obesity-related diseases: a consequence of our man- made chemical environment? Health 4(12A):1556–1561

    Article  Google Scholar 

  • Durrington PN (2012) Cholesteryl ester transfer protein (CETP) inhibitors. Br J Cardiol 19(3):126–133

    Article  Google Scholar 

  • Fernández-Valverde SL, Taft RJ, Mattick JS (2011) MicroRNAs in β-cell biology. Diabetes 60(7):1825–1831

    Article  PubMed  PubMed Central  Google Scholar 

  • Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445

    Article  CAS  PubMed  Google Scholar 

  • Guérin M, Dolphin PJ, Chapman MJ (1994) A new in vitro method for the simultaneous evaluation of cholesteryl ester exchange and mass transfer between HDL and apoB-containing lipoprotein subspecies. Identification of preferential cholesteryl ester acceptors in human plasma. Arterioscler Thromb Vasc Biol 14(2):199–206

    Article  Google Scholar 

  • Herrera BM, Lindgren CM (2010) The genetics of obesity. Curr Diab Rep 10:498–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hertle E, van Greevenbroek MM, Arts IC, van der Kallen CJ, Feskens EJ, Schalkwijk CG, Stehouwer CD (2014) Complement activation products C5a and sC5b-9 are associated with low-grade inflammation and endothelial dysfunction, but not with atherosclerosis in a cross-sectional analysis: the CODAM study. Int J Cardiol 174(2):400–403

    Article  CAS  PubMed  Google Scholar 

  • Hotamisligil GS (2003) Inflammatory pathways and insulin action. Int J Obes Relat Metab Disord 27(Suppl 3):S53–S55

    Article  CAS  PubMed  Google Scholar 

  • Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM (1995) Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 95(5):2409–2415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kogelman LJA, Kadarmideen HN, Mark T, Karlskov-Mortensen P, Bruun CS, Cirera S, Jacobsen MJ, Jørgensen CB, Fredholm M (2013) An F2 pig resource population as a model for genetic studies of obesity and obesity-related diseases in humans: design and genetic parameters. Front Genet 4:1–14

    Article  CAS  Google Scholar 

  • Kristensen T, Fredholm M, Cirera S (2015) Expression study of GLUT4 translocation-related genes in a porcine pre-diabetic model. Mamm Genome 26(11–12):650–657

    Article  CAS  PubMed  Google Scholar 

  • Lee EK, Lee MJ, Abdelmohsen K, Kim W, Kim MM, Srikantan S, Martindale JL, Hutchison ER, Kim HH, Marasa BS, Selimyan R, Egan JM, Smith SR, Fried SK, Gorospe M (2011) miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor γ expression. Mol Cell Biol 31(4):626–638

    Article  CAS  PubMed  Google Scholar 

  • Li R, Sun Q, Jia Y, Cong R, Ni Y, Yang X, Jiang Z, Zhao R (2012) Coordinated miRNA/mRNA expression profiles for understanding breed-specific metabolic characters of liver between Erhualian and large white pigs. PLoS One 7(6):e38716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsay MA (2008) microRNAs and the immune response. Trends Immunol 29(7):343–351

    Article  CAS  PubMed  Google Scholar 

  • López-Bermejo A, Bosch M, Recasens M, Biarnés J, Esteve E, Casamitjana R, Vendrell J, Ricart W, Fernández-Real JM (2005) Potential role of interleukin-18 in liver disease associated with insulin resistance. Obes Res 13(11):1925–1931

    Article  PubMed  Google Scholar 

  • Ludvigsen TP, Kirk RK, Christoffersen BØ, Pedersen HD, Martinussen T, Kildegaard J, Heegaard PM, Lykkesfeldt J, Olsen LH (2015) Göttingen minipig model of diet-induced atherosclerosis: influence of mild streptozotocin-induced diabetes on lesion severity and markers of inflammation evaluated in obese, obese and diabetic, and lean control animals. J Transl Med 13(1):312

    Article  PubMed  PubMed Central  Google Scholar 

  • Manthey HD, Thomas AC, Shiels IA, Zernecke A, Woodruff TM, Rolfe B, Taylor SM (2011) Complement C5a inhibition reduces atherosclerosis in ApoE−/− mice. FASEB J 25(7):2447–2455

    Article  CAS  PubMed  Google Scholar 

  • Markiewski MM, Lambris JD (2007) The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am J Pathol 171(3):715–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Membrez M, Ammon-Zufferey C, Philippe D, Aprikian O, Monnard I, Macé K, Darimont C (2009) Interleukin-18 protein level is upregulated in adipose tissue of obese mice. Obesity (Silver Spring) 17(2):393–395

    Article  CAS  Google Scholar 

  • Mentzel CM, Anthon C, Jacobsen MJ, Karlskov-Mortensen P, Bruun CS, Jørgensen CB, Gorodkin J, Cirera S, Fredholm M (2015) Gender and obesity specific MicroRNA expression in adipose tissue from lean and obese pigs. PLoS One 10(7):e0131650

    Article  PubMed  PubMed Central  Google Scholar 

  • Mestdagh P, Van Vlierberghe P, De Weer A, Muth D, Westermann F, Speleman F, Vandesompele J (2009) A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol 10(6):R64

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore KJ, Rayner KJ, Suárez Y, Fernández-Hernando C (2010) microRNAs and cholesterol metabolism. Trends Endocrinol Metab 21(12):699–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega FJ, Mercader JM, Moreno-Navarrete JM, Rovira O, Guerra E, Esteve E, Xifra G, Martínez C, Ricart W, Rieusset J, Rome S, Karczewska-Kupczewska M, Straczkowski M, Fernández-Real JM (2014) Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care 37(5):1375–1383

    Article  CAS  PubMed  Google Scholar 

  • Palmer BF, Clegg DJ (2015) The sexual dimorphism of obesity. Mol Cell Endocrinol 15(402):113–119. doi:10.1016/j.mce.2014.11.029

    Article  Google Scholar 

  • Pant SD, Karlskov-Mortensen P, Jacobsen MJ, Cirera S, Kogelman LJA, Bruun CS, Mark T, Jørgensen CB, Grarup N, Appel EVR, Galjatovic EAA, Hansen T, Pedersen O, Guerin M, Huby T, Lesnik P, Meuwissen THE, Kadarmideen HN, Fredholm M (2015) Comparative analyses of QTLs influencing obesity and metabolic phenotypes in pigs and humans. PLoS One 10(9):e0137356

    Article  PubMed  PubMed Central  Google Scholar 

  • Quimet M, Moore KJ (2013) A big role for small RNAs in HDL homeostasis. J Lipid Res 54:1161–1167

    Article  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Rottiers V, Naar AM (2012) MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 13:239–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skovgaard K, Cirera S, Vasby D, Podolska A, Breum SØ, Dürrwald R, Schlegel M, Heegaard PM (2013) Expression of innate immune genes, proteins and microRNAs in lung tissue of pigs infected experimentally with influenza virus (H1N2). Innate Immun 19(5):531–544

    Article  PubMed  Google Scholar 

  • Spurlock ME, Gabler NK (2008) The development of porcine models of obesity and the metabolic syndrome. J Nutr 138(2):397–402

    CAS  PubMed  Google Scholar 

  • Timoneda O, Balcells I, Núñez JI, Egea R, Vera G, Castelló A, Tomàs A, Sánchez A (2013) MiRNA expression profile analysis in kidney of different porcine breeds. PLoS One 8(1):e55402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsutsumi K, Hagi A, Inoue Y (2001) The relationship between plasma high density lipoprotein cholesterol levels and cholesteryl ester transfer protein activity in six species of healthy experimental animals. Biol Pharm Bull 24(5):579–581

    Article  CAS  PubMed  Google Scholar 

  • van Dielen FM, van’t Veer C, Schols AM, Soeters PB, Buurman WA, Greve JW (2001) Increased leptin concentrations correlate with increased concentrations of inflammatory markers in morbidly obese individuals. Int J Obes Relat Metab Disord 25(12):1759–1766

    Article  PubMed  Google Scholar 

  • Vickers KC, Landstreet SR, Levin MG, Shoucri BM, Toth CL, Taylor RC, Palmisano BT, Tabet F, Cui HL, Rye KA, Sethupathy P, Remaley AT (2014) MicroRNA-223 coordinates cholesterol homeostasis. Proc Natl Acad Sci USA 111(40):14518–14523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Peng DQ (2011) New insights into the mechanism of low high-density lipoprotein cholesterol in obesity. Lipids Health Dis 10:176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Zou C, Pan L, Xu Y, Qi W, Ma G, Hou Y, Jiang P (2015) MicroRNA-140-5p inhibits the progression of colorectal cancer by targeting VEGFA. Cell Physiol Biochem 37(3):1123–1133

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Guo F, Wang G, Wang J, Zheng F, Guan X, Chang A, Zhang X, Dai C, Li S, Li X, Wang B (2015) miR-20a regulates adipocyte differentiation by targeting lysine-specific demethylase 6b and transforming growth factor-β signaling. Int J Obes (Lond) 39(8):1282–1291

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank laboratory technician Karin Tarp for excellent assistance in the Fluidigm platform. We would like to thank Caroline M. Mentzel for statistical advice. We would also like to thank Dr. Philippe Lesnik for the CETP measurements in the F2 pig population.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanna Cirera.

Ethics declarations

Conflict of interest

The authors declare not having any conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

mRNA assays selected for this study. Ref, gene used as reference gene; F, forward primer; R, reverse primer. Ampliqon size, size of the product in the qPCR. Previously validated primer assays, targeting transcripts coding for several phase proteins and cytokines involved in inflammation, were selected for the present study. Supplementary material 1 (XLSX 15 kb)

Supplementary Table 2

microRNA assays selected for this study. F, forward primer; R, reverse primer. Reference, article used for the selection of microRNAs to investigate. Previously validated primer assays, targeting microRNAs involved in cholesterol metabolism, innate immune response, inflammation and obesity were selected for the present study. Supplementary material 2 (XLSX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cirera, S., Tørsleff, B.C.J., Ritz, C. et al. Hepatic expression of inflammatory genes and microRNAs in pigs with high “cholesteryl ester transfer protein” (CETP) activity. Mamm Genome 27, 503–510 (2016). https://doi.org/10.1007/s00335-016-9649-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-016-9649-4

Keywords

Navigation