Skip to main content
Log in

Precision analysis of kinetic modelling estimates in dynamic contrast enhanced MRI

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

Dynamic contrast enhanced MRI and pharmacokinetic modelling provide a powerful tool for tumour diagnosis and treatment evaluation. However, several studies show low reproducibility of the technique and poor precision of the transendothelial transfer constant K trans. This work proposes a theoretical framework describing how finite signal-noise-ratio (SNR) in the MR images is propagated throughout the measurement protocol to uncertainty on the kinetic parameter estimates.

Materials and methods

After deriving a distribution for the contrast agent concentration, a maximum likelihood estimator (MLM) is proposed that exhibits Cramer–Rao lower bounds (CRLB). An analytical expression is derived for the CRLB that can be used to determine confidence intervals for kinetic parameters and to investigate the influence of protocol parameters as scan time and temporal resolution on K trans-precision.

Results

Ktrans-uncertainty can be reduced up to 30% by using MLM in comparison with least square estimator. Ktrans-precision is proportional to the SNR and depends strongly on the kinetic parameter values themselves. Minimal scan time and temporal resolution were found to be 15 min and 15 s, respectively, for Gd-DTPA. Temporal resolution should be enhanced by decreasing the NEX parameter (NEX ≤ 1).

Conclusion

CRLB provide a golden standard to construct 95% confidence intervals, which can be used to perform protocol optimization and to test the statistical significance of K trans-changes in treatment evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aerts HJWL, van Riel NAW, Backes WH (2008) System identification theory in pharmacokinetic modeling of dynamic contrast-enhanced MRI: influence of contrast injection. Magn Reson Med 59(5): 1111–1119

    Article  PubMed  CAS  Google Scholar 

  2. Ah-See MLW, Makris A, Taylor NJ, Harrison M, Richman PI, Burcombe RJ, Stirling JJ, d’Arcy JA, Collins DJ, Pittam MR, Ravichandran D, Padhani AR (2008) Early changes in functional dynamic magnetic resonance imaging predict for pathologic response to neoadjuvant chemotherapy in primary breast cancer. Clin Cancer Res 14(20): 6580–6589

    Article  PubMed  CAS  Google Scholar 

  3. Barrett T, Kobayashi H, Brechbiel M, Choyke PL (2006) Macromolecular MRI contrast agents for imaging tumor angiogenesis. Eur J Radiol 60(3): 353–366

    Article  PubMed  Google Scholar 

  4. Batchelor Te (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11(1): 83–95

    Article  PubMed  CAS  Google Scholar 

  5. Bernstein M, King K, JZ X (2004) Basic pulse sequences. In: Handbook of MRI pulse sequences, vol 1. Elsevier Academic Press, Amsterdam, p 1017

  6. Bonny JM, Foucat L, Laurent W, Renou JP (1998) Optimization of signal intensity and T1-dependent contrast with nonstandard flip angles in spin-echo and inversion-recovery MR imaging. J Magn Reson 130(1): 51–57

    Article  PubMed  CAS  Google Scholar 

  7. Buckley DL (2002) Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T-1-weighted MRI. Magn Reson Med 47(3): 601–606

    Article  PubMed  Google Scholar 

  8. Calamante F, Vonken E, van Osch M (2007) Contrast agent concentration measurements affecting quantification of bolus-tracking perfusion MRI. Magn Reson Med 58(3): 544–553

    Article  PubMed  Google Scholar 

  9. Cavassila S, Deval S, Huegen C, van Ormondt D, Graveron-Demilly D (2001) Cramer-rao bounds: an evaluation tool for quantitation. NMR Biomed 14(4): 278–283

    Article  PubMed  CAS  Google Scholar 

  10. Ceelen W, Smeets P, Backes W, Van Damme N, Boterberg T, Demetter P, Bouckenooghe I, De Visschere M, Peeters M, Pattyn P (2006) Noninvasive monitoring of radiotherapy-induced microvascular changes using dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) in a colorectal tumor model. Int J Radiat Oncol Biol Phys 64(4): 1188–1196

    Article  PubMed  Google Scholar 

  11. Collins DJ, Padhani AR (2004) Dynamic magnetic resonance imaging of tumor perfusion. IEEE Eng Med Biol 23(5): 65–83

    Article  Google Scholar 

  12. De Deene Y, Van de Walle R, Achten E, De Wagter C (1998) Mathematical analysis and experimental investigation of noise in quantitative magnetic resonance imaging applied in polymer gel dosimetry. Signal Process 70(2): 85–101

    Article  Google Scholar 

  13. Di Giovanni P, Azlan C, Ahearn TS, Semple SI, Gilbert FJ, Redpath TW (2010) The accuracy of pharmacokinetic parameter measurement in DCE-MRI of the breast at 3T. Phys Med Biol 55(1): 32–121

    Article  Google Scholar 

  14. Furman-Haran E, Schechtman E, Kelcz F, Kirshenbaum K, Degani H (2005) Magnetic resonance imaging reveals functional diversity of the vasculature in benign and malignant breast lesions. Cancer-Am Cancer Soc 104(4): 708–718

    Google Scholar 

  15. Galbraith SM, Lodge MA, Taylor NJ, Rustin GJS, Bentzen S, Stirling JJ, Padhani AR (2002) Reproducibility of dynamic contrast-enhanced MRI in human muscle and tumours: comparison of quantitative and semi-quantitative analysis. NMR Biomed 15(2): 132–142

    Article  PubMed  Google Scholar 

  16. Goh V, Padhani AR, Rasheed S (2007) Functional imaging of colorectal cancer angiogenesis. Lancet Oncol 8(3): 245–255

    Article  PubMed  Google Scholar 

  17. Gudbjartsson H, Patz S (1995) The rician distribution of noisy MRI data. Magn Reson Med 34(2): 910–914

    Article  PubMed  CAS  Google Scholar 

  18. Heilmann M, Kiessling F, Enderlin M, Schad LR (2006) Determination of pharmacokinetic parameters in DCE MRI—consequence of nonlinearity between contrast agent concentration and signal intensity. Invest Radiol 41(6): 536–543

    Article  PubMed  CAS  Google Scholar 

  19. Henderson E, Rutt BK, Lee TY (1998) Temporal sampling requirements for the tracer kinetics modeling of breast disease. Magn Reson Imaging 16(9): 1057–1073

    Article  PubMed  CAS  Google Scholar 

  20. Heverhagen JT, von Tengg-Kobligk H, Baudendistel KT, Jia G, Polzer H, Henry H, Levine AL, Rosol TJ, Knopp MV (2004) Benign prostate hyperplasia: evaluation of treatment response with DCE MRI. Magn Reson Mater Phy 17(1): 5–11

    Article  CAS  Google Scholar 

  21. Kiessling F, Lichy M, Grobholz R, Farhan N, Heilmann M, Michel MS, Trojan L, Werner A, Rabe J, Delorme S, Kauczor HU, Schlemmer HP (2003) Detection of prostate carcinomas with T1-weighted dynamic contrast-enhance MRI value of two-compartment model. Radiologe 43(6): 474–480

    Article  PubMed  CAS  Google Scholar 

  22. Koh TS, Thng CH, Lee PS, Hartono S, Rumpel H, Goh BC, Bisdas S (2008) Hepatic metastases: in vivo assessment of perfusion parameters at dynamic contrast-enhanced MR imaging with dual-input two-compartment tracer kinetics model. Radiology 249(1): 307–320

    Article  PubMed  Google Scholar 

  23. Lopata RGP, Backes WH, van den Bosch PPJ, van Riel NAW (2007) On the identifiability of pharmacokinetic parameters in dynamic contrast-enhanced imaging. Magn Reson Med 58(2): 425–429

    Article  PubMed  Google Scholar 

  24. Macovski A (1996) Noise in mri. Magn Reson Med 36(3): 494–497

    Article  PubMed  CAS  Google Scholar 

  25. Ocak I, Bernardo M, Metzger G, Barrett T, Pinto P, Albert PS, Choyke PL (2007) Dynamic contrast-enhanced MRI of prostate cancer at 3 T: a study of pharmacokinetic parameters. Am J Roentgenol 189(4): W192–W201

    Article  Google Scholar 

  26. Padhani AR (2002) Dynamic contrast-enhanced MRI in clinical oncology: Current status and future directions. J Magn Reson Imaging 16(4): 407–422

    Article  PubMed  Google Scholar 

  27. Padhani AR, Hayes C, Landau S, Leach MO (2002) Reproducibility of quantitative dynamic MRI of normal human tissues. NMR Biomed 15(2): 143–153

    Article  PubMed  Google Scholar 

  28. Parker GJM, Roberts C, Macdonald A, Buonaccorsi GA, Cheung S, Buckley DL, Jackson A, Watson Y, Davies K, Jayson GC (2006) Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med 56(5): 993–1000

    Article  PubMed  Google Scholar 

  29. Preibisch C, Deichmann R (2009) Influence of RF spoiling on the stability and accuracy of T-1 mapping based on spoiled FLASH with varying flip angles. Magn Reson Med 61(1): 125–135

    Article  PubMed  CAS  Google Scholar 

  30. Radhakrishna Rao C (1945) Information and the accuracy attainable in the estimation of statistical parameters. Bull Calcutta Math Soc 37: 81–91

    Google Scholar 

  31. Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40(11): 715–724

    Article  PubMed  Google Scholar 

  32. Schabel MC, Morrell GR (2009) Uncertainty in T-1 mapping using the variable flip angle method with two flip angles. Phys Med Biol 54(1): N1–N8

    Article  PubMed  Google Scholar 

  33. Schabel MC, Parker DL (2008) Uncertainty and bias in contrast concentration measurements using spoiled gradient echo pulse sequences. Phys Med Biol 53(9): 2345–2373

    Article  PubMed  Google Scholar 

  34. Schwenzer NF, Kotter I, Henes JC, Schraml C, Fritz J, Claussen CD, Horger M (2010) The role of dynamic contrast-enhanced MRI in the differential diagnosis of psoriatic and rheumatoid arthritis. Am J Roentgenol 194(3): 715–720

    Article  Google Scholar 

  35. Stephens MA (1979) Tests of fit for the logistic distribution based on the empirical distribution function. Biometrika 66(3): 591–595

    Article  Google Scholar 

  36. Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7(1): 91–101

    Article  PubMed  CAS  Google Scholar 

  37. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp M, Larsson HBW, Lee TY, Mayr NA, Parker GJM, Port RE, Taylor J, Weisskoff RM (1999) Estimating kinetic parameters from dynamic contrast-enhanced T-1-weighted MRI of a diffusable tracer: Standardized quantities and symbols. J Magn Reson Imaging 10(3): 223–232

    Article  PubMed  CAS  Google Scholar 

  38. Vincensini D, Dedieu V, Eliat PA, Vincent C, Bailly C, de Certaines J, Joffre F (2007) Magnetic resonance imaging measurements of vascular permeability and extracellular volume fraction of breast tumors by dynamic Gd-DTPA-enhanced relaxometry. Magn Reson Imaging 25(3): 293–302

    Article  PubMed  CAS  Google Scholar 

  39. Yang C, Karczmar GS, Medved M, Oto A, Zamora M, Stadler WM (2009) Reproducibility assessment of a multiple reference tissue method for quantitative dynamic contrast enhanced-MRI analysis. Magn Reson Med 61(4): 851–859

    Article  PubMed  Google Scholar 

  40. Yankeelov TE, Rooney WD, Li X, Springer CS (2003) Variation of the relaxographic “shutter-speed” for transcytolemmal water exchange affects the CR bolus-tracking curve shape. Magn Reson Med 50(6): 1151–1169

    Article  PubMed  Google Scholar 

  41. Zwick S, Brix G, Tofts P, Strecker R, Kopp-Schneider A, Laue H, Semmler W, Kiessling F (2010) Simulation-based comparison of two approaches frequently used for dynamic contrast-enhanced mri. Eur Radiol 20(2): 432–442

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter De Naeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Naeyer, D., De Deene, Y., Ceelen, W.P. et al. Precision analysis of kinetic modelling estimates in dynamic contrast enhanced MRI. Magn Reson Mater Phy 24, 51–66 (2011). https://doi.org/10.1007/s10334-010-0235-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-010-0235-6

Keywords

Navigation