Skip to main content
Log in

Morphological and molecular diagnostic species characters of Staurozoa (Cnidaria) collected on the coast of Helgoland (German Bight, North Sea)

  • Original Paper
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

Scientific knowledge and records on staurozoans are limited probably because of their inconspicuous life habit and the small number of specialists for this taxon. To increase the awareness for Staurozoa, we identified morphological and molecular features of the three staurozoan species Haliclystus tenuis Kishinouye, 1910, Haliclystus auricula Clark, 1863, and Craterolophus convolvulus (Johnston, 1835) collected on the coast of the island Helgoland to evaluate their suitability as diagnostic characters. Useful macromorphological diagnostic features were the patterns of white spots of nematocysts and internal arm structures, whereas tentacle and gonad follicle numbers showed high intraspecific variations. Morphometric measurements on photographs of living specimens provided reliable data for interspecific comparisons. Comprehensive nematocyst analyses revealed interspecific shape differences of isorhizas and three types of rhopaloids, indicating that the staurozoan cnidome is more diverse than previously assumed. However, the taxonomic value of nematocyst analyses in Staurozoa remains unclear because comprehensive data is still lacking for most species. Comparative molecular genetic sequence analyses of mitochondrial 16S and cytochrome c oxidase subunit I (COI) and nuclear 18S ribosomal DNA identified the three species and confirmed their morphological identification. In comparison to published data, our analyses indicate similarities between H. auricula and Haliclystus antarcticus Pfeffer, 1889. Proteomic fingerprinting by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) differentiated all three species, suggesting that this technique could provide an alternative rapid identification method for staurozoans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amor A (1962) Sobre Stauromedusae del litoral Patagonico. Notas Mus La Plata Zool 20:89–96

    Google Scholar 

  • Berrill M (1962) The biology of three New England stauromedusae, with a description of a new species. Can J Zool 40:1249–1262

    Article  Google Scholar 

  • Bode M, Laakmann S, Kaiser P, Hagen W, Auel H, Cornils A (2017) Unravelling diversity of deep-sea copepods using integrated morphological and molecular techniques. J Plankton Res 39:600–617

    Article  CAS  Google Scholar 

  • Boos K, Buchholz C, Buchholz F, Gutow L (2004) Bericht über die Zusammensetzung des Helgoländer Makrozoobenthos im Vergleich historischer und aktueller Quellen-Klassifizierungsvorschlag nach der WRRL und Empfehlungen zum Monitoring. Landesamt für Natur und Umwelt (LANU) des Landes Schleswig-Holstein; Projektendbericht

  • Bridge D, Cunningham CW, DeSalle R, Buss LW (1995) Class-level relationships in the phylum Cnidaria: molecular and morphological evidence. Mol Biol Evol 12:679–689

    CAS  PubMed  Google Scholar 

  • Calder DR (1983) Nematocysts of stages in the life cycle of Stomolophus meleagris, with keys to scyphistomae and ephyrae of some western Atlantic Scyphozoa. Can J Zool 61:1185–1192

    Article  Google Scholar 

  • Carlgren O (1930) Die Lucernariden. Furth Zool Res Swed Antarc Exp 1901–1903 2:1–18

  • Carlgren O (1938) Eine neue südafrikanische Lucernariidae, Lucernariopsis capensis. K Fysiogr Sällsk Lund Förh 8:1–6

    Google Scholar 

  • Carrette T, Alderslade P, Seymour J (2002) Nematocyst ratio and prey in two Australian cubomedusans, Chironex fleckeri and Chiropsalmus sp. Toxicon 40:1547–1551

    Article  CAS  PubMed  Google Scholar 

  • Cartwright P, Evans N, Dunn C, Marques A, Miglietta M, Schuchert P, Collins A (2008) Phylogenetics of Hydroidolina (Hydrozoa: Cnidaria). J Mar Biol Assoc UK 88:1663–1672

  • Clark HJ (1863) Prodromus of the history, structure, and physiology of the order Lucernariae. J Boston Soc Nat Hist 7:531–567

    Google Scholar 

  • Collins AG (2002) Phylogeny of Medusozoa and the evolution of cnidarian life cycles. J Evol Biol 15:418–432

  • Collins AG, Daly M (2005) A new deepwater species of Stauromedusae, Lucernaria janetae (Cnidaria, Staurozoa, Lucernariidae), and a preliminary investigation of stauromedusan phylogeny based on nuclear and mitochondrial rDNA data. Biol Bull 208:221–230

    Article  CAS  PubMed  Google Scholar 

  • Collins AG, Schuchert P, Marques AC, Jankowski T, Medina M, Schierwater B (2006) Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Syst Biol 55:97–115

    Article  PubMed  Google Scholar 

  • Collins AG, Bentlage B, Lindner A, Lindsay D, Haddock SHD, Jarms G, Norenburg JL, Jankowski T, Cartwright P (2008) Phylogenetics of Trachylina (Cnidaria: Hydrozoa) with new insights on the evolution of some problematical taxa. J Mar Biol Asso UK 88:1673–1685

    Article  Google Scholar 

  • Corbin PG (1979) The seasonal abundance of four species of Stauromedusae (Coelenterata: Scyphomedusae) at Plymouth. J Mar Biol Asso UK 59:385–391

    Article  Google Scholar 

  • Cunningham CW, Buss LW (1993) Molecular evidence for multiple episodes of paedomorphosis in the family Hydractiniidae. Biochem Syst Ecol 21:57–69

  • Dawson MN (2005) Cyanea capillata is not a cosmopolitan jellyfish: morphological and molecular evidence for C. annaskala and C. rosea (Scyphozoa: Semaeostomeae: Cyaneidae) in South-Eastern Australia. Invertebr Syst 19:361–370

    Article  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

  • Faasse MA, Waajen S (2011) De steelkwallen van Nederland (Cnidaria: Staurozoa). Nederlandse Faunistische Mededelingen 35:61–67

    Google Scholar 

  • Fautin DG (2009) Structural diversity, systematics, and evolution of cnidae. Toxicon 54:1054–1064

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Feltens R, Görner R, Kalkhof S, Gröger-Arndt H, von Bergen M (2010) Discrimination of different species from the genus Drosophila by intact protein profiling using matrix-assisted laser desorption ionization mass spectrometry. EMC Evol Biol 10:95

    Article  CAS  Google Scholar 

  • Fenselau C, Demirev PA (2001) Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev 20:57–171

    Article  CAS  Google Scholar 

  • Folmer OM, Black W, Hoen R, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  PubMed  Google Scholar 

  • Gibb S (2014) MALDIquantForeign: import/export routines for MALDIquant. R pack. ver. 0.9. http://CRAN.R-project.org/package=MALDIquantForeign

  • Gibb S, Strimmer K (2012) MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics 28:2270–2271

    Article  CAS  PubMed  Google Scholar 

  • Gomez Daglio L, Dawson MN (2017) Species richness of jellyfishes (Scyphozoa: Discomedusae) in the Tropical Eastern Pacific: missed taxa, molecules, and morphology match in a biodiversity hotspot. J Invertebr Syst 31:635–663

    Article  Google Scholar 

  • Gwilliam GF (1956) Studies on west coast Stauromedusae. Dissertation, University of California

  • Häussermann V (2004) Identification and taxonomy of soft-bodied hexacorals exemplified by Chilean sea anemones; including guidelines for sampling, preservation and examination. J Mar Biol Assoc UK 84:931–936

    Article  Google Scholar 

  • Heins A, Glatzel T, Holst S (2015) Revised descriptions of the nematocysts and the asexual reproduction modes of the scyphozoan jellyfish Cassiopea andromeda (Forskål, 1775). Zoomorphology 134:351–366

    Article  Google Scholar 

  • Hirano YM (1986) Species of Stauromedusae from Hokkaido, with notes on their metamorphosis. J Fac Sci Hokkaido Univ 24:182–201

    Google Scholar 

  • Hirano YM (1997) A review of a supposedly circumboreal species of stauromedusa, Haliclystus auricula (Rathke, 1806). In: den Hartog JC (ed) Proceedings of the 6th International Conference on Coelenterate Biology, Leiden, pp 247–252

  • Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2018) UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35:518–522

    Article  CAS  PubMed  Google Scholar 

  • Holst S, Laakmann S (2014) Morphological and molecular discrimination of two closely related jellyfish species, Cyanea capillata and C. lamarckii (Cnidaria, Scyphozoa), from the Northeast Atlantic. J Plankton Res 36:48–63

    Article  Google Scholar 

  • Holst S, Laakmann S (2019) First record of the stalked jellyfish Haliclystus tenuis Kishinouye, 1910 (Cnidaria: Staurozoa) in Atlantic waters. Mar Biodivers. 49(2):1061–1066

  • Holst S, Sötje I, Tieman H, Jarms G (2007) Life cycle of the rhizostome jellyfish Rhizostoma octopus (L.) (Scyphozoa, Rhizostomae), with studies on cnidocysts and statoliths. Mar Biol 151:1695–1710

    Article  Google Scholar 

  • Holst S, Michalik P, Noske M, Krieger J, Sötje I (2016) Potential of X-ray micro-computed tomography for soft-bodied and gelatinous cnidarians with special emphasis on scyphozoan and cubozoan statoliths. J Plankton Res 38:1225–1242

    Article  CAS  Google Scholar 

  • Jarms G, Tiemann H (1996) On a new hydropolyp without tentacles, Microhydrula limopsicola n. sp., epibiotic on bivalve shells from the Antarctic. Sci Mar 60:109–115

    Google Scholar 

  • Jarms G, Tiemann H, Båmstedt U (2002) Development and biology of Periphylla periphylla (Scyphozoa: Coronatae) in a Norwegian fjord. Mar Biol 141:647–657

    Article  Google Scholar 

  • Johnston G (1835) Illustrations in British zoology. London’s Mag Nat Hist 8:59–61

    Google Scholar 

  • Kahn AS, Matsumoto GI, Hirano YM, Collins AG (2010) Haliclystus californiensis, a “new” species of stauromedusa (Cnidaria: Staurozoa) from the Northeast Pacific, with a key to the species of Haliclystus. Zootaxa 2518:49–59

    Article  Google Scholar 

  • Kaiser P, Bode M, Cornils A, Hagen W, Martínez Arbizu P, Auel H, Laakmann S (2018) High-resolution community analysis of deep-sea copepods using MALDI-TOF protein fingerprinting. Deep-Sea Res Part I 138:122–130

    Article  CAS  Google Scholar 

  • Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufmann C, Ziegler D, Schaffner F, Carpenter S, Pflüger V, Mathis A (2011) Evaluation of matrix assisted laser desorption/ionization time of flight mass spectrometry for characterization of Culicoides nubeculosus biting midges. Med Vet Entomol 25:32–38

    Article  CAS  PubMed  Google Scholar 

  • Kayal E, Bentlage B, Pankey MS, Ohdera AH, Medina M, Plachetzki DC, Collins AG, Ryan JF (2018) Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits. BMC Evol Biol 18:68

    Article  CAS  PubMed Central  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Kikinger R, Salvini-Plawen L (1995) Development from polyp to stauromedusa in Stylocoronella (Cnidaria: Scyphozoa). J Mar Biol Assoc UK 75:899–912

    Article  Google Scholar 

  • Kishinouye K (1893) Mushi-kurage, Depastrum inabai n. sp. Zool Mag 5:416–419

    Google Scholar 

  • Kishinouye K (1899) Contributions to the natural history of the Commander Islands. XIII. A new species of stalked medusae, Haliclystus stejnegeri. Proc U S Nat Mus 22:125–129

    Article  Google Scholar 

  • Kishinouye K (1910) Some medusa of Japanese waters. J Coll Sci 27:1–35

    Google Scholar 

  • Kramp PL (1961) Synopsis of the medusae of the world. J Mar Biol Assoc UK 40:5–469

    Google Scholar 

  • Laakmann S, Holst S (2014) Emphasizing the diversity of North Sea hydromedusae by combined morphological and molecular methods. J Plankton Res 36:64–76

    Article  Google Scholar 

  • Laakmann S, Gerdts G, Erler R, Knebelsberger T, Martinez Arbizu P, Raupach MJ (2013) Comparison of molecular species identification for North Sea calanoid copepods (Crustacea) using proteome fingerprints and DNA sequences. Mol Ecol Resour 13:862–876

    Article  CAS  PubMed  Google Scholar 

  • Lamouroux JVF (1815) Mémoire sur la Lucernaire campanulée. Mém Mus Hist Nat II:460–473

    Google Scholar 

  • Larson RJ (1980) A new stauromedusa, Kishinouyea corbini (Scyphozoa, Stauromedusae) from the tropical western Atlantic. B Mar Sci 30:102–107

    Google Scholar 

  • Larson RJ (1988) Kyopoda lamberti gen. nov., sp. nov., an atypical stauromedusa (Scyphozoa, Cnidaria) from the eastern Pacific, representing a new family. Can J Zool 66:2301–2303

    Article  Google Scholar 

  • Larson RJ, Fautin DG (1989) Stauromedusae of the genus Manania (= Thaumatoscyphus) (Cnidaria, Scyphozoa) in the Northeast Pacific, including descriptions of new species Manania gwilliami and Manania handi. Can J Zool 67:1543–1549

    Article  Google Scholar 

  • Li HH, Sung PJ, Ho HC (2016) The complete mitochondrial genome of the Antarctic stalked jellyfish, Haliclystus antarcticus Pfeffer, 1889 (Staurozoa: Stauromedusae). Genom Data 8:113–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linnaeus C (1758) Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata. Laurentius Salvius: Holmiae

  • Mayer AG (1910) Medusae of the world, Vol 3. Carnegie Institution, Washington

    Book  Google Scholar 

  • Mazzeo MF, de Giulio B, Guerriero G, Ciarcia G, Malorni A, Russo GL, Siciliano RA (2008) Fish authentication by MALDI-TOF mass spectrometry. J Agric Food Chem 56:11071–11076

    Article  CAS  PubMed  Google Scholar 

  • Miranda LS, Marques AC (2016) Hidden impacts of the Samarco mining waste dam collapse to Brazilian marine fauna—an example from the staurozoans (Cnidaria). Biota Neotropica 16:e20160169

    Article  Google Scholar 

  • Miranda LS, Morandini AC, Marques AC (2009) Taxonomic review of Haliclystus antarcticus Pfeffer, 1889 (Stauromedusae, Staurozoa, Cnidaria), with remarks on the genus Haliclystus Clark, 1863. Polar Biol 32:1507–1519

    Article  Google Scholar 

  • Miranda LS, Collins AG, Marques AC (2010) Molecules clarify a cnidarian life cycle—the “hydrozoan” Microhydrula limopsicola is an early life stage of the staurozoan Haliclystus antarcticus. PLoS One 5:e10182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miranda LS, Morandini AC, Marques AC (2012a) Do Staurozoa bloom? A review of stauromedusan population biology. Hydrobiologia 690:57–67

    Article  Google Scholar 

  • Miranda LS, Haddad MA, Mills CE, Marques AC (2012b) Lucernariopsis capensis Carlgren, 1938 (Cnidaria, Staurozoa) in Brazil: first record outside its type locality in South Africa. Zootaxa 3158:60–64

    Article  Google Scholar 

  • Miranda LS, Collins AG, Marques AC (2013) Internal anatomy of Haliclystus antarcticus (Cnidaria, Staurozoa) with a discussion on histological features used in Staurozoan taxonomy. J Morphol 274:1365–1383

    Article  PubMed  Google Scholar 

  • Miranda LS, Collins AG, Hirano YM, Mills CE, Marques AC (2016a) Comparative internal anatomy of Staurozoa (Cnidaria), with functional and evolutionary inferences. PeerJ 4:e2594

    Article  PubMed  PubMed Central  Google Scholar 

  • Miranda LS, Hirano YM, Mills CE, Falconer A, Fenwick D, Marques AC, Collins AG (2016b) Systematics of stalked jellyfishes (Cnidaria: Staurozoa). PeerJ 4:e1951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miranda LS, Branch GM, Collins AG, Hirano YM, Marques AC, Griffiths CL (2017) Stalked jellyfishes (Cnidaria: Staurozoa) of South Africa, with the description of Calvadosia lewisi sp. nov. Zootaxa 4227:369–389

    Article  Google Scholar 

  • Miranda LS, Mills CE, Hirano YM, Collins AG, Marques AC (2018) A review of the global diversity and natural history of stalked jellyfishes (Cnidaria, Staurozoa). Mar Biodiv. 48(4):1695–1714

  • Moura CJ, Harris DJ, Cunha MR, Rogers AD (2008) DNA barcoding reveals cryptic diversity in marine hydroids (Cnidaria, Hydrozoa) from coastal and deep-sea environments. Zool Scr 37:93–108

    Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol Biol Evol 32:268–274

    Article  CAS  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos M et al. (2015) Vegan: community ecology package. R package ver 2.3-0. http://CRAN.Rpoject.org/package=vegan

  • Ortman BD, Bucklin A, Pages F, Youngbluth M (2010) DNA barcoding the Medusozoa using mtCOI. Deep-Sea Res II 57:2148–2156

    Article  CAS  Google Scholar 

  • Östman C (2000) A guideline to nematocysts nomenclature and classification, and some notes on the systematic value of nematocysts. Sci Mar 64(Supl 1):31–46

    Article  Google Scholar 

  • Östman C, Hydman J (1997) Nematocyst analysis of Cyanea capillata and Cyanea lamarckii (Scyphozoa, Cnidaria). Sci Mar 61:313–344

    Google Scholar 

  • Otto JJ (1976) Early development and planula movement in Haliclystus (Scyphozoa: Stauromedusae). In: Mackie GO (ed) Coelenterates ecology and behavior. Springer, New York, pp 319–329

    Chapter  Google Scholar 

  • Pfeffer G (1889) Zur Fauna von Süd-Georgien. Jahrb Hamburg Wiss Anst 6:37–55

    Google Scholar 

  • Purcell JE, Mills CE (1988) The correlation between nematocysts types and diets in pelagic Hydrozoa. In: Hessinger DA, Lenhoff HM (eds) The biology of nematocysts. Academic Press, Orlando, pp 463–485

  • R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at https://www.R-project.org/. Accessed 2 March 2017

  • Raupach MJ, Mayer C, Malyutina M, Wägele J-W (2009) Multiple origins of deep-sea Asellota (Crustacea: Isopoda) from shallow waters revealed by molecular data. Proc Royal Soc B 276:799–808

  • Reichert K, Buchholz F (2006) Changes in the macrozoobenthos of the intertidal zone at Helgoland (German Bight, North Sea): a survey of 1984 repeated in 2002. Helgol Mar Res 60:213–223

    Article  Google Scholar 

  • Riccardi N, Lucini L, Benagli C, Welker M, Wicht B, Tonolla M (2012) Potential of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the identification of freshwater zooplankton: a pilot study with three Eudiaptomus (Copepoda: Diaptomidae) species. J Plankton Res 34:484–492

    Article  CAS  Google Scholar 

  • Rothen J, Githaka N, Kanduma EG, Olds C, Pflüger V, Mwaura S, Bishop RP, Daubenberger C (2016) Matrix-assisted laser desorption/ionization time of flight mass spectrometry for comprehensive indexing of East African ixodid tick species. Parasit Vectors 9:151. https://doi.org/10.1186/s13071-016-1424-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Salla V, Murray KK (2013) Matrix-assisted laser desorption ionization mass spectrometry for identification of shrimp. Anal Chim Acta 794:55–59

    Article  CAS  PubMed  Google Scholar 

  • Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved PCR primers. Ann Entomol Soc Am 87:651–701

    Article  CAS  Google Scholar 

  • Suzuki R, Shimodaira H (2014) pvclust: hierarchical clustering with P-values via multiscale bootstrap resampling. R package. ver. 1.3–2. http://CRAN.R-project.org/package=pvclust

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida T (1933) Eine neue Becherqualle aus Hokkaido. Proc Imp Acad 9:450–452

    Article  Google Scholar 

  • Uchida T, Hanaoka K-I (1934) Anatomy of two stalked medusae with remarks on the distribution of the Stauromedusae in Japan. Journal of the Facultuy of Science Hokkaido Imperial University 2:211–239

    Google Scholar 

  • Volta P, Riccardi N, Lauceri R, Tonolla M (2012) Discrimination of freshwater fish species by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS): a pilot study. J Limnol 71:164–169

    Article  Google Scholar 

  • von Lendenfeld R (1884) The Schyphomedusae of the Southern Hemisphere. P Linn Soc NSW 9:155–169

    Google Scholar 

  • Wieser A, Schneider L, Jung J, Schubert S (2012) MALDI-TOF MS in microbiological diagnostics—identification of microorganisms and beyond (mini review). Appl Microbiol Biotechnol 93:965–974

    Article  CAS  PubMed  Google Scholar 

  • Zagal CJ (2004a) Population biology and habitat of the stauromedusa Haliclystus auricula in Southern Chile. J Mar Biol Assoc UK 84:331–336

    Article  Google Scholar 

  • Zagal CJ (2004b) Diet of stauromedusa Haliclystus auricula from Southern Chile. J Mar Biol Assoc UK 84:337–340

    Article  Google Scholar 

  • Zagal CJ (2008) Morphological abnormalities in the stauromedusa Haliclystus auricula (Cnidaria) and their possible causes. J Mar Biol Assoc UK 88:259–262

    Article  Google Scholar 

  • Zagal CJ, Hirano YM, Mills CE, Edgar GJ, Barrett NS (2011) New records of Staurozoa from Australian coastal waters, with a description of a new species of Lucernariopsis Uchida, 1929 (Cnidaria, Staurozoa, Stauromedusae) and a key to Australian Stauromedusae. Mar Biol Res 7:651–666

    Article  Google Scholar 

  • Zettler ML, Beermann J, Dannheim J, Ebbe B, Grotjahn M, Günther CP, Gusky M, Kind B, Kröncke I, Kuhlenkamp R, Orendt C, Rachor E, Schanz A, Schröder A, Schüler L, Witt J (2018) An annotated checklist of macrozoobenthic species in German waters of the North and Baltic seas. Helgol Mar Res 72:5

    Article  Google Scholar 

Download references

Acknowledgements

We thank Karen Jeskulke for her assistance in sampling and laboratory work. We gratefully appreciate the scientific guest research service provided by the Biological Institute Helgoland (BAH) of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research. We thank Thomas Glatzel (Carl von Ossietzky University of Oldenburg) for the collaboration. This is publication no. 6 of Senckenberg am Meer Proteome Laboratory and publication no. 59 of Senckenberg am Meer Metabarcoding and Molecular Laboratory.

Funding

This study was funded by the Federal Ministry of Education and Research of Germany (BMBF Grant Nos. 03F0499A and 03F0664A) and the Land Niedersachsen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Holst.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Sampling and field studies

All necessary permits for sampling and observational field studies have been obtained by the authors from the competent authorities and are mentioned in the acknowledgements, if applicable. The study is compliant with CBD and Nagoya protocols.

Data availability

Genetic sequence data generated in this study were deposited in GenBank with Accession Numbers MF322725–MF322746 and MF346293–MF346312. For all three gene fragments (COI, 16S and 18S rDNA), the multiple alignments, NJ and ML trees are available in Ddryad digital repository (https://doi.org/10.5061/dryad.5cr6008). Raw data on nematocyst measurements and proteomic mass spectra analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Communicated by S. Piraino

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Online Resource 1

Body parts used for nematocyst analyses. GF gastric filaments, ST secondary tentacle knobs, AN/PT anchors/primary tentacles, EP exumbrella perradial, EI exumbrella interradial, SP subumbrella perradial, SI subumbrella interradial (DOCX 19 kb)

Online Resource 2

Sequences from GenBank and from own studies used for molecular genetic analyses (Neighbour Joining and Maximum Likelihood analyses) (DOCX 28 kb)

Online Resource 3

Test statistics of parameters compared among species. ANOVA Kruskal-Wallis one-way analysis of variance on ranks, Cc Craterolophus convolvulus, Ha Haliclystus auricula, Ht Haliclystus tenuis, Iso isorhiza, Nc nematocyst, R1 rhopaloid type 1, R2 rhopaloid type 2, R3 rhopaloid type 3, Rank sum Mann-Whitney rank sum test (DOCX 19 kb)

Online Resource 4

(PNG 3.57 mb)

High resolution image (TIF 7.36 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holst, S., Heins, A. & Laakmann, S. Morphological and molecular diagnostic species characters of Staurozoa (Cnidaria) collected on the coast of Helgoland (German Bight, North Sea). Mar Biodiv 49, 1775–1797 (2019). https://doi.org/10.1007/s12526-019-00943-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12526-019-00943-1

Keywords

Navigation