Skip to main content

Advertisement

Log in

Characterization by next-generation sequencing of 24 new microsatellite loci for the barred sand-bass, Paralabrax nebulifer (Girard, 1854), from the Baja California Peninsula, Mexico

  • Short Communication
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

We characterized a set of new hypervariable microsatellite loci for the barred sand-bass (Paralabrax nebulifer), a marine fish that supports important recreational and artisanal fisheries in California, USA and the west coast of the Baja California Peninsula, Mexico. We performed a shotgun genome sequencing with the 454 XL titanium chemistry and used bioinformatics to search for microsatellite loci with perfect repeats. We selected 40 primer pairs that were synthesized and genotyped in an ABI PRISM 3730XL DNA sequencer in 32 individuals from San Juanico, Baja California Sur. We estimated levels of genetic diversity, deviations from linkage and Hardy–Weinberg equilibrium, the frequency of null alleles and the probability of individual identity for the new markers. We successfully scored 24 microsatellite loci (13 tetranucleotides and 11 dinucleotides). The average number of alleles per locus was 12.5 (range 4–23). The average observed and expected heterozygosities were 0.779 (range 0.313–0.969) and 0.774 (range 0.350–0.939), respectively. We detected significant linkage disequilibrium in two pairs of loci. Genotype frequencies at seven loci showed significant deviations from the expectations of Hardy–Weinberg equilibrium and had estimated null allele frequencies ≥10%. The probability of individual identity for the new loci was 8.5−36. The new markers will be useful for investigating patterns of fine-scale genetic structure and diversity to estimate larval dispersal and assess metapopulation dynamics, information necessary for the sustainable management of P. nebulifer fisheries at the west coast of the Baja California Peninsula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Allen LG, Block HE (2012) Planktonic larval duration, settlement, and growth rates of the young-of-the-year of two sand basses (Paralabrax nebulifer and P. maculatofasciatus: fam. Serranidae) from Southern California. Bull S Calif Acad Sci 111:15–21. doi:10.3160/0038-3872-111.1.15

    Article  Google Scholar 

  • Amos W, Hoffman JI, Frodsham A, Zhang L, Best S, Hill AVS (2007) Automated binning of microsatellite alleles: problems and solutions. Mol Ecol Notes 7:10–14. doi:10.1111/j.1471-8286.2006.01560.x

    Article  CAS  Google Scholar 

  • CONAPESCA (2016) Comisión Nacional de Acuacultura y Pesca. SAGARPA. http://www.sagarpa.gob.mx/quienesomos/datosabiertos/conapesca/Paginas/default.aspx. Accessed 13 September 2016

  • Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631. doi:10.1093/molbev/msl191

    Article  CAS  PubMed  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39:1–38

    Google Scholar 

  • Erisman BE, Allen LG, Claisse JT, Pondella DJ, Miller EF, Murray JH, Walters C (2011) The illusion of plenty: hyperstability masks collapses in two recreational fisheries that target fish spawning aggregations. Can J Fish Aquat Sci 68:1705–1716. doi:10.1139/f2011-090

    Article  Google Scholar 

  • Goudet J (1995) FSTAT (Version 1.2): A computer program to calculate F-statistics. J Hered 86:485–486

    Article  Google Scholar 

  • Hastings P, Walker HJ, Galland GR (2014) Fishes: a guide to their diversity. University of California Press, Berkeley

    Google Scholar 

  • Heemstra PC (1995) Meros, serranos, guasetas, enjambres, baquetas, indios, loros, gallinas, cabrillas, garropas. In: Fisher W, Krupp F, Scheneider W, Sommer C, Carpenter KE, Niem VH (eds) Guía FAO para la identitifcación de especies para los fines de la pesca. Pacífico centro-oriental, vol III. FAO, Roma, pp 1565–1613

    Google Scholar 

  • Hovey CB, Allen LG, Hovey TE (2002) The reproductive pattern of barred sand bass (Paralabrax nebulifer) from southern California. CalCOFI Rep 43:174–181

    Google Scholar 

  • Jarvis ET, Linardich C, Valle CF (2010) Spawning-related movements of barred sand bass, Paralabrax nebulifer, in Southern California: interpretations from two decades of historical tag and recapture data. Bull S Calif Acad Sci 109:123–143

    Google Scholar 

  • Jarvis ET, Loke-Smith KA, Evans K, Kloppe RE, Young KA, Valle CF (2014) Reproductive potential and spawning periodicity in barred sand bass (Paralabrax nebulifer) from the San Pedro Shelf, southern California. Calif Fish Game 100:289–309

    Google Scholar 

  • Karlsson S, Mork J (2005) Deviation from Hardy–Weinberg equilibrium, and temporal instability in allele frequencies at microsatellite loci in a local population of Atlantic cod. ICES J Mar Sci 62:1588–1596. doi:10.1016/j.icesjms.2005.05.009

    Article  CAS  Google Scholar 

  • Meglécz E, Costedoat C, Dubut V, Gilles A, Malausa T, Pech N, Martin JF (2010) QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics 26:403–404. doi:10.1093/bioinformatics/btp670

    Article  CAS  PubMed  Google Scholar 

  • Munguia-Vega A, Saenz-Arroyo A, Greenley AP, Espinoza-Montes JA, Palumbi SR, Rossetto M, Micheli F (2015) Marine reserves help preserve genetic diversity after impacts derived from climate variability: lessons from the pink abalone in Baja California. Global Ecol Cons 4:264–276. doi:10.1016/j.gecco.2015.07.005

    Article  Google Scholar 

  • Paterson CN, Chabot CL, Robertson JM, Erisman B, Cota-Nieto JJ, Allen LG (2015) The genetic diversity and population structure of barred sand bass, Paralabrax nebulifer: a historically important fisheries species off southern and Baja California. CalCOFI Rep 56:97–109

    Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539. doi:10.1093/bioinformatics/bts460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Saenz-Agudelo P, Jones GP, Thorrold SR, Planes S (2009) Estimating connectivity in marine populations: an empirical evaluation of assignment tests and parentage analysis under different gene flow scenarios. Mol Ecol 18:1765–1776. doi:10.1111/j.1365-294X.2009.04109.x

    Article  CAS  PubMed  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotech 18:233–234. doi:10.1038/72708

    Article  CAS  Google Scholar 

  • Selkoe KA, D’Aloia CC, Crandall ED, Iacchei M, Liggins L, Puritz JB, von der Heyden S, Toonen RJ (2016) A decade of seascape genetics: contributions to basic and applied marine connectivity. Mar Ecol Prog Ser 554:1–19. doi:10.3354/meps11792

    Article  Google Scholar 

  • Selkoe KA, Toonen RJ (2011) Marine connectivity: a new look at pelagic larval duration and genetic metrics of dispersal. Mar Ecol Prog Ser 436:291–305. doi:10.3354/meps09238

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi:10.1111/j.1471-8286.2004.00684.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the personnel from the Programa Escama at the Centro Regional de Investigación Pesquera - La Paz and the fishermen who helped us collecting the samples, including Laura Cynthia Zuñiga Pacheco, Ibeth and Yolitzia Bareño Higuera, Francisco Lucero Romero AKA Japo and Rolando Sanchez. Karla Vargas and Stacy L. Sotak helped us at various stages during microsatellite genotyping at the University of Arizona. This work was partially funded by The David and Lucile Packard Foundation grant #2015-62798 supporting the PANGAS Science Coordinator, Fondo Mexicano para la Conservación de la Naturaleza - Fondo Golfo de California grant M-1304-004 to Pronatura Noroeste A.C. and The Walton Family Foundation grant 2016-475 to SmartFish Rescate de Valor, A.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Munguia-Vega.

Additional information

Communicated by K. Kocot

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domínguez-Contreras, J.F., Munguia-Vega, A., Castillo-Lopez, A. et al. Characterization by next-generation sequencing of 24 new microsatellite loci for the barred sand-bass, Paralabrax nebulifer (Girard, 1854), from the Baja California Peninsula, Mexico. Mar Biodiv 48, 2207–2210 (2018). https://doi.org/10.1007/s12526-017-0687-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12526-017-0687-2

Keywords

Navigation