Skip to main content
Log in

Gravity crustal models and heat flow measurements for the Eurasia Basin, Arctic Ocean

  • Original Research Paper
  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

The Gakkel Ridge in the Arctic Ocean with its adjacent Nansen and Amundsen Basins is a key region for the study of mantle melting and crustal generation at ultraslow spreading rates. We use free-air gravity anomalies in combination with seismic reflection and wide-angle data to compute 2-D crustal models for the Nansen and Amundsen Basins in the Arctic Ocean. Despite the permanent pack-ice cover two geophysical transects cross both entire basins. This means that the complete basin geometry of the world’s slowest spreading system can be analysed in detail for the first time. Applying standard densities for the sediments and oceanic crystalline crust, the gravity models reveal an unexpected heterogeneous mantle with densities of 3.30 × 103, 3.20 × 103 and 3.10 × 103 kg/m3 near the Gakkel Ridge. We interpret that the upper mantle heterogeneity mainly results from serpentinisation and thermal effects. The thickness of the oceanic crust is highly variable throughout both transects. Crustal thickness of less than 1 km dominates in the oldest parts of both basins, increasing to a maximum value of 6 km near the Gakkel Ridge. Along-axis heat flow is highly variable and heat flow amplitudes resemble those observed at fast or intermediate spreading ridges. Unexpectedly, high heat flow along the Amundsen transect exceeds predicted values from global cooling curves by more than 100%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baker ET, Edmonds HN, Michael PJ, Bach W, Dick HJB, Snow JE, Walker SL, Banerjee NR, Langmuir CH (2004) Hydrothermal venting in magma deserts: the ultraslow-spreading Gakkel and Southwest Indian ridges. Geochem Geophys Geosys 5(8):Q08002

    Article  Google Scholar 

  • Birch F (1961) The velocity of compressional waves in rocks to 10 kilobars, part 2. J Geophys Res 66(7):2199–2224

    Article  Google Scholar 

  • Bown JW, White RS (1994) Variation of oceanic crustal thickness with spreading rate. Earth Planet Sci Lett 121:435–449

    Article  Google Scholar 

  • Brigaud F, Vasseur G (1989) Mineralogy, porosity and fluid control on thermal conductivity of sedimentary rocks. Geophys J Int 98:525–542

    Article  Google Scholar 

  • Brozena JM, Childers VA, Lawver LA, Gahagan LM, Forsberg R, Faleide JI, Eldholm O (2003) New aerogeophysical study of the Eurasia basin and Lomonosov ridge: implications for basin development. Geology 31(9):825–828

    Article  Google Scholar 

  • Carlson RL (1998) Seismic velocities in the uppermost oceanic crust: age dependence and the fate of layer 2A. J Geophys Res 103(B4):7069–7077

    Article  Google Scholar 

  • Carlson RL, Herrick CN (1990) Densities and porosities in the oceanic crust and their variations with depth and age. J Geophys Res 95(B6):9153–9170

    Article  Google Scholar 

  • Christensen NI (1966) Elasticity of ultrabasic rocks. J Geophys Res 71:5921–5931

    Google Scholar 

  • Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res 100(B7):9761–9788

    Article  Google Scholar 

  • Clauser C, Huenges E (1995) Thermal conductivity of rocks and minerals. In: Ahrens TJ (ed) Rock physics and phase relations: a handbook of physical constants, vol 3. American Geophysical Union, Washington, DC, pp 105–126

    Google Scholar 

  • Coakley BJ, Cochran JR (1998) Gravity evidence of very thin crust at the Gakkel ridge (Arctic Ocean). Earth Planet Sci Lett 162:81–95

    Article  Google Scholar 

  • Cochran JR, Kurras GJ, Edwards MH, Coakley BJ (2003) The Gakkel ridge: bathymetry, gravity anomalies and crustal accretion at extremely slow spreading rates. J Geophys Res 108(B2)

  • Davis EE, Chapman DS, Wang K, Villinger H, Fisher AT, Robinson SW, Grigel J, Probnow D, Stein J, Becker K (1999) Regional heat flow variations across the sedimented Juan de Fuca Ridge eastern flank: constraints on lithospheric cooling and lateral hydrothermal heat transport. J Geophys Res 104(B8):17675–17688

    Article  Google Scholar 

  • Duckworth GL, Baggeroer AB (1985) Inversion of refraction data from the Fram and Nansen basins of the Arctic Ocean. Tectonophysics 114(1–4):55–102

    Article  Google Scholar 

  • Edmonds HN, Michael PJ, Baker ET, Connelly DP, Snow JE, Langmuir CH, Dick HJB, Mühe R, German CR, Graham DW (2003) Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean. Nature 421:252–256

    Article  Google Scholar 

  • Fowler CMR (2005) The solid Earth, 2nd edn. Cambridge University Press, Cambridge (UK)

    Google Scholar 

  • Funck T, Hopper JR, Larsen HC, Louden KF, Tucholke BE, Holbrook WS (2003) Crustal structure at the ocean-continent transition at Flemish-cap: seismic refraction results. J Geophys Res 108(B11). doi:10.1029/2003JB002434

  • Grevemeyer I, Weigel W (1996) Seismic velocities of the uppermost igneous crust versus age. Geophys J Int 124:631–635

    Article  Google Scholar 

  • Hartmann A, Villinger H (2002) Inversion of marine heat flow measurements by expansion of the temperature decay integral. Geophys J Int 148:628–636

    Article  Google Scholar 

  • Hyndman RD, Davis EE, Wright JA (1979) The measurement of marine geothermal heat flow by a multipenetration probe with digital acoustic telemetry and in situ thermal conductivity. Mar Geophys Res 4:181–205

    Article  Google Scholar 

  • Jakobsson M, IBCAO Editorial Board Members (2001) Improvement to the international bathymetric chart of the Arctic Ocean (IBCAO): updating the data base and the grid model. EOS Trans Am Geophys Un 82(47). Fall Meet Suppl, Abstract OS11B-0371

  • Jokat W, Micksch U (2004) The sedimentary structure of Nansen and Amundsen basins, Arctic Ocean. Geophys Res Lett 31(2). doi: 10.1029/2003/GL018352

  • Jokat W, Schmidt-Aursch MC (2007) Geophysical characteristics of the ultra-slow spreading Gakkel ridge, Arctic Ocean. Geophys J Int 168:983–998

    Article  Google Scholar 

  • Jokat W, Weigelt E, Kristoffersen Y, Rasmussen T, Schöne T (1995) New insights into the evolution of the Lomonosov ridge and the Eurasian basin. Geophys J Int 122:378–392

    Google Scholar 

  • Jokat W et al (2002) Geophysical investigations. In Thiede J (ed) POLARSTERN ARKTIS XVII/2 cruise report: AMORE 2001, vol 421. Berichte zur Polarforschung, pp 165–210

  • Jokat W, Ritzmann O, Schmidt-Aursch MC, Drachev S, Gauger S, Snow J (2003) Geophysical evidence for reduced melt production on the ultraslow Gakkel ridge (Arctic Ocean). Nature 423:962–965

    Article  Google Scholar 

  • Karasik AM (1968) Magnetic anomalies of the Gakkel ridge and origin of the Eurasia subbasin of the Arctic Ocean. Geophys Methods Prosp Arctic 5:8–19

    Google Scholar 

  • Kenyon S, Forsberg R, Coakley B (2008) New gravity field for the Arctic. EOS Trans Am Geophys Un 89(32):289–290

    Article  Google Scholar 

  • Klingelhöfer F, Géli L, Matias L, Steinsland N, Mohr J (2000) Crustal structure of a super-slow spreading centre: a seismic refraction study of Mohns ridge, 72°N. Geophys J Int 141:509–526

    Article  Google Scholar 

  • Kristoffersen I, Husebye ES (1985) Multi-channel seismic reflection measurements in the Eurasian Basin, Arctic Ocean, from U.S. ice station Fram-IV. Tectonophysics 114:103–115

    Article  Google Scholar 

  • Lawver LA, Müller RD, Srivastava SP, Roest W (1988) The opening of the Arctic Ocean. In: Bleil U, Thiede J (eds) Geological history of the Polar Oceans: Arctic versus Antarctic. Kluwer, Dordrecht, pp 29–62

    Google Scholar 

  • Lin J, Purdy GM, Schouten H, Sempere JC, Zervas C (1990) Evidence from gravity data for focused magmatic accretion along the Mid-Atlantic ridge. Nature 344:627–632

    Article  Google Scholar 

  • Louden KE, Osler JC, Srivastava SP, Keen CE (1996) Formation of oceanic crust at slow spreading rates: new constraints from an extinct spreading center in the Labrador Sea. Geology 24:771–774

    Article  Google Scholar 

  • Michael PJ, Langmuir CH, Dick HJB, Snow J, Goldstein SL, Graham DW, Lehnert K, Kurras G, Jokat W, Mühe R, Edmonds HN (2003) Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature 423:956–961

    Article  Google Scholar 

  • Minshull TA, Muller MR, White RS (2006) Crustal structure of the Southwest Indian ridge at 66°E: seismic constraints. Geophys J Int 166:135–147

    Article  Google Scholar 

  • Morton JL, Sleep NH (1985) A mid-ocean ridge thermal model: constraints on the volume of axial hydrothermal heat flux. J Geophs Res 90(B13):11345–11353

    Article  Google Scholar 

  • Mutter JC, Karson JA (1992) Structural processes at slow-spreading ridges. Science 257:627–634

    Article  Google Scholar 

  • Nafe JE, Drake CL (1957) Variation with depth in shallow and deep water marine sediments of porosity, density and the velocity of compressional and shear waves. Geophysics 22:523–552

    Article  Google Scholar 

  • Parsons B, Sclater JG (1977) An analysis of the variation of ocean floor bathymetry and heat flow with age. J Geophys Res 32:803–827

    Article  Google Scholar 

  • Pelayo AM, Stein S, Stein C (1994) Estimation of oceanic hydrothermal heat flux from heat flow and depths of midocean ridge seismicity and magma chambers. Geophys Res Lett 21(8):713–716

    Article  Google Scholar 

  • Pfender M, Villinger H (2002) Miniaturized data loggers for deep sea sediment temperature gradient measurements. Mar Geol 186:557–570

    Article  Google Scholar 

  • Reid I, Jackson HR (1981) Oceanic spreading rate and crustal thickness. Mar Geophys Res 5:165–172

    Google Scholar 

  • Skelton ADL, Valley JW (2000) The relative timing of serpentinisation and mantle-exhumation at the continent-ocean transition, Iberia: constraints from oxygen isotopes. Earth Planet Sci Lett 178:327–338

    Article  Google Scholar 

  • Small C, Sandwell T (1992) An analysis of ridge axis gravity roughness and spreading rate. J Geophys Res 97(B3):3235–3245

    Article  Google Scholar 

  • Stein CA, Stein S (1992) A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359:123–129

    Article  Google Scholar 

  • Su W, Mutter CZ, Mutter JC, Buck WR (1994) Some theoretical predictions on the relationships among spreading rate, mantle temperature, and crustal thickness. J Geophys Res 99(B2):3215–3227

    Article  Google Scholar 

  • Villinger H, Langseth MG, Gröschel-Becker HM, Fisher AT (1994) Estimating in situ thermal conductivity from log data. Proc ODP Init Repts 139:545–552

    Google Scholar 

  • Vogt PR, Taylor PT, Kovacs LC, Johnson GL (1979) Detailed aeromagnetic investigations of the Arctic basin. J Geophys Res 84(B3):1071–1089

    Article  Google Scholar 

  • Voss M, Jokat W (2007) Continent—ocean transition and voluminous magmatic underplating derived from P-wave velocity modelling of the East Greenland continental margin. Geophys J Int 170(2):580–604

    Article  Google Scholar 

  • Weigelt E, Jokat W (2001) Peculiarities of roughness and thickness of oceanic crust in the Eurasia Basin, Arctic Ocean. Geophys J Int 145:505–516

    Article  Google Scholar 

  • Wessel P, Smith WHF (1998) New improved version of generic mapping tools released. EOS Trans Am Geophys Un 79(47):579

    Article  Google Scholar 

  • White RS, McKenzie DP, O’Nions RK (1992) Oceanic crustal thickness from seismic measurements and rare earth element inversions. J Geophys Res 97(B13):19683–19715

    Article  Google Scholar 

Download references

Acknowledgments

We thank the captains and crews of FS Polarstern and USCGC Healy. Thanks also to Martin Heesemann for the evaluation of the large number of thermal conductivity measurements. Forward modelling was conducted using the FUGRO-LCT POTENTIAL KIT Version 2003.0 (© 1987-2003 by LCT, Inc., Houston). Figs. 1, 3, 4, 5 and 7 were created with GMT by Wessel and Smith (1998). This study was funded by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morelia Urlaub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urlaub, M., Schmidt-Aursch, M.C., Jokat, W. et al. Gravity crustal models and heat flow measurements for the Eurasia Basin, Arctic Ocean. Mar Geophys Res 30, 277–292 (2009). https://doi.org/10.1007/s11001-010-9093-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11001-010-9093-x

Keywords

Navigation