Skip to main content
Log in

Gravity and multichannel seismic reflection constraints on the lithospheric structure of the Canary Swell

  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

Deep penetrating multichannel seismic reflection and gravity data have been used to study the lithospheric structure of the Canary Swell. The seismic reflection data show the transition from undisturbed Jurassic oceanic crust, away from the Canary Islands, to an area of ocean crust strongly modified by the Canary volcanism (ACV). Outside the ACV the seismic records image a well layered sedimentary cover, underlined by a bright reflection from the top of the igneous basement and also relatively continuous reflections from the base of the crust. In the ACV the definition of the boundary between sedimentary cover and igneous basement and the crust-mantle boundary remains very loose. Two-dimensional gravity modelling in the area outside the influence of the Canary volcanism, where the reflection data constrain the structure of the ocean crust, suggests a thinning of the lithosphere. The base of the lithosphere rises from 100 km, about 400 km west of the ACV, to 80 km at the outer limit of the ACV. In addition, depth conversion of the seismic reflection data and unloading of the sediments indicate the presence of a regional depth anomaly of an extension similar to the lithospheric thinning inferred from gravity modelling. The depth anomaly associated with the swell, after correction for sediment weight, is about 500 m. We interpret the lithospheric thinning as an indication of reheating of old Mesozoic lithosphere beneath the Canary Basin and along with the depth anomaly as indicating a thermal rejuvenation of the lithosphere. We suggest that the most likely origin for the Canary Islands is a hot spot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anguita, F. and Hernan, F., 1975, A Propagating Fracture Model versus a Hot Spot Origin for the Canary Islands,Earth Planet. Sci. Lett. 27, 11.

    Google Scholar 

  • Banda, E., Dañobeitia, J. J., Suriñach, E. and Ansorge, J., 1981, Features of Crustal Structure under the Canary Islands,Earth Planet. Sci. Lett. 55, 11–24.

    Google Scholar 

  • Banda, E., Ranero, C. R., Dañobeitia, J. J. and Rivero, A., 1992, Seismic Boundaries of the Eastern Central Atlantic Mesozoic Crust from Multichannel Seismic Data,Geol. Soc. Am. Bull. 104, 1340–1349.

    Google Scholar 

  • Bosshard, E. and MacFarlane, D. J., 1970, Crustal Structure of the Western Canary Islands from Seismic Refraction and Gravity Data,J. Geophys. Res. 75, 4901–4918.

    Google Scholar 

  • Bott, M. H. P., 1960, The Use of Rapid Digital Computing Methods for Direct Gravity Interpretation of Sedimentary Basins,Geophys. J. R. Astr. Soc. 3, 63–67.

    Google Scholar 

  • Canales, J. P., Dañobeitia, J. J., Dalwood, R, Peirce, C. and The CD82 Scientific Party, 1995, Structure of the Canary Islands from Wide-Angle Seismic Refraction and Reflection Data,Annales Geophysicae Abstract,13, C124.

    Google Scholar 

  • Caress, D. W., McNutt, M. K., Detrick, R. S. and Mutter, J. C., 1995, Seismic Imaging of Hotspot Related Underplating beneath the Marquesas Islands,Nature 373, 600–603.

    Google Scholar 

  • Cordier, 1985,Velocities in Reflection Seismology D. Reidel Publishing Company, Dordrecht, The Netherlands.

    Google Scholar 

  • Courtney, R. C. and White, R. S., 1986, Anomalous Heat Flow and Geoid across the Cape Verde Rise: Evidence for Dynamic Support from a Thermal Plume in the Mantle,Geophys. J. R. Astr. Soc. 87, 815–867.

    Google Scholar 

  • Ewing, M., Carpenter, C., Windish, C. and Ewing, J., 1973, Sediment Distribution in the Oceans: the Atlantic,Geol. Soc. Am. Bull. 84, 71–88.

    Google Scholar 

  • Filmer, P. E. and McNutt, M. K., 1989, Geoid Anomalies over the Canary Islands Group,Mar. Geophys. Res. 11, 77–87.

    Google Scholar 

  • Hayes, D. E. and Rabinowitz, P. D., 1975, Mesozoic Magnetic Lineations and the Magnetic Quiet Zone off Northwest Africa,Earth Plant. Sci. Lett. 28, 105–115.

    Google Scholar 

  • Holik, J. S., Rabinowitz, P. and Austin, J. A., 1991, Effects of Canary Hotspot Volcanism on Structure of Oceanic Crust off Morocco,J. Geophys. Res. 96, 12039–12067.

    Google Scholar 

  • Hubbert, M. K., 1948, A Line-Integral Method of Computing the Gravimetric Effects of Two-Dimensional Masses,Geophysics 13, 215–225.

    Google Scholar 

  • Johnson, H. P. and Carlson, R. L., 1992, Variations of Seafloor Depth with Age: A Test of Models based on Drilling Results,Geophys. Res. Lett. 19, 1971–1974.

    Google Scholar 

  • Jonas, J., Hall, S. and Casey, J. F., 1991, Gravity Anomalies over Extinct Spreading Centers: A Test of Gravity Models of Active Centers,J. Geophys. Res. 96, 11759–11777.

    Google Scholar 

  • Kuo, B., and Forsyth, D. W., 1988, Gravity Anomalies of the Ridge-Transform System in the South Atlantic between 31 and 34.5° S: Upwelling Centers and Variations in Crustal Thickness,Mar. Geophys. Res. 10, 205–232.

    Google Scholar 

  • Le Douran, S. and Parsons, B., 1982, A Note on the Correction of Ocean Floor Depths for Sediment Loading,J. Geophys. Res. 87, 4715–4722.

    Google Scholar 

  • Lin, J., Purdy, G. M., Schouten, H., Sempéré, J. C., and Zervas, C., 1990, Evidence from Gravity Data for Focused Magmatic Accretion along the Mid-Atlantic Ridge,Nature 344, 627–632.

    Google Scholar 

  • Monnereau, M, and Cazenave, A., 1988, Variation of the Apparent Compensation Depth of Hotspot Swell with Age of Plate,Earth Planet. Sci. Lett. 91, 179–197.

    Google Scholar 

  • Monnereau, M. and Cazenave, A., 1990, Depth and Geoid Anomalies over Oceanic Hotspot Swells: A Global Survey,J. Geophys. Res. 95, 15429–15438.

    Google Scholar 

  • Morgan, W. J., 1981, Hotspot Tracks and the Opening of the Atlantic and Indian Oceans, in C. Emiliani (ed.),The Sea, John Wiley and Sons, New York, 443–487.

    Google Scholar 

  • Mutter, C. Z. and Mutter, J. C., 1993, Variations in Thickness of Layer 3 Dominate Oceanic Crustal Structure,Earth Planet. Sci. Lett. 117, 295–317.

    Google Scholar 

  • Nafe, S. E. and Drake, C. L., 1969, Physical Properties of Marine Sediments, in M. N. Hill (ed.),The Sea, Interscience, New York, 794–819.

    Google Scholar 

  • Parsons, B. and Sclater, J. G., 1977, An Analysis of the Variation of Ocean Floor Bathymetry and Heat Flow with Age,J. Geophys. Res. 82, 803–827.

    Google Scholar 

  • Prince, R. A. and Forsyth, D. W., 1988, Horizontal Extent of Anomalously Thin Crust near the Vema Fracture Zone from the Three-Dimensional Analysis of Gravity Anomalies,J. Geophys. Res. 93, 8051–8063.

    Google Scholar 

  • Ranero, C. R., Banda, E. and Buhl, P., 1995, Seismic Study of the Structure of the Crust in the Canary Basin: Implications for the Processes of Crustal Accretion at Slow-Spreading Centers,J. Geophys. Res. (submitted).

  • Roest, W. R., Dañobeitia, J. J., Verhoef, J. and Collette, B. J., 1992, Magnetic Anomalies in the Canary Basin and the Mesozoic Evolution of the Central North Atlantic,Mar. Geophys. Res. 14, 1–24.

    Google Scholar 

  • Ryan, M. P., 1988, The Mechanics and Three-Dimensional Internal Structure of Active Magmatic Systems: Kilauea Volcano, Hawaii,J. Geophys. Res. 93, 4213–4248.

    Google Scholar 

  • Spudich, P. and Orcutt, J., 1980, A New Look at the Seismic Velocity Structure of the Oceanic Crust,Rev. Geophys. Space Phys. 18, 627–645.

    Google Scholar 

  • Staudigel, H. and Schmincke, H. U., 1984, The Pliocene Seamount Series of La Palma/Canary Islands,J. Geophys. Res. 89, 11195–11215.

    Google Scholar 

  • Stein, C. A. and Stein, S. A., 1992, A Model for the Global Variation in Oceanic Depth and Heat Flow with Lithospheric Age,Nature 359, 123–129.

    Google Scholar 

  • ten Brink, U. and Brocher, T. M., 1987, Multichannel Seismic Evidence for a Subcrustal Intrusive Complex under Oahu and a Model for Hawaiian Volcanism,J. Geophys. Res. 92, 13687–13707.

    Google Scholar 

  • Tucholke, B. E. and Ludwig, W. J., 1982, Structure and Origin of the J Anomaly Ridge, Western North Atlantic Ocean,J. Geophys. Res. 87, 9389–9407.

    Google Scholar 

  • Tucker, P. M. and Yorston, H. J., 1973,Pitfalls in Seismic Interpretation, Monograph series, 2, SEG, Tulsa, 50 pp.

    Google Scholar 

  • Watson, S., McKenzie, D., 1991, Melt Generation by Plumes: A Study of Hawaiian volcanism,J. Petrol. 32, 501–537.

    Google Scholar 

  • Watts, A. B., 1994, Crustal Structure, Gravity Anomalies and Flexure of the Lithosphere in the Vicinity of the Canary Islands,Geophys. J. Int. 119, 648–666.

    Google Scholar 

  • Watts, A. B., ten Brink, U. S., Buhl, P. and Brocher, T. M., 1985, A Multichannel Seismic Study of Lithospheric Flexure across the Hawaiian-Emperor Seamount Chain,Nature 315, 105–111.

    Google Scholar 

  • Wessel, P. and Smith, W. H. F., 1991, Free Software Helps Map and Display Data,EOS Trans. AGU 72, N 441, 445–446.

    Google Scholar 

  • White, R. S., 1984, Atlantic Oceanic Crust: Seismic Structure of a Slow-Spreading Ridge, in Gass, I. G., Lippard, S. J. and Shelton, A. W., (eds.), Ophiolites and oceanic lithosphere,Geol. Soc. of London Spec. Publ., London,13, 101–111.

    Google Scholar 

  • White, R. S., McKenzie, D. and O'Nions, R. K, 1992, Oceanic Crustal Thickness from Seismic Measurements and Rare Earth Element Inversions,J. Geophys. Res. 97, 19683–19715.

    Google Scholar 

  • Van Wyckhouse, R., 1973, SYNBAPS (Synthetic Bathymetric Profiling Systems),Naval Oceanogr. Office. Tech. Rep. TR-233.

  • Ye, S., Rihm, R., Canales, J. P., Dañobeitia, J. J. and Gallart, J., 1995, Crustal Transect Through Volcanic Island Gran Canaria,Annales Geophysicae Abstract,13, C128.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranero, C.R., Torne, M. & Banda, E. Gravity and multichannel seismic reflection constraints on the lithospheric structure of the Canary Swell. Mar Geophys Res 17, 519–534 (1995). https://doi.org/10.1007/BF01204342

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01204342

Key words

Navigation