Skip to main content

Advertisement

Log in

Satellite and In Situ Observations of a Phytoplankton Bloom from Coastal Bay of Bengal: Role in pCO2 Modulation

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

A phytoplankton bloom was monitored in coastal waters of Bay of Bengal and its influence in water column properties was investigated. Significant draw down of CO2 was noted within the vicinity of the bloom associated with high chlorophyll biomass. Microscopic analysis revealed diatoms as the dominant population. Skeletonema costatum a diatom, reached cell density of 36,898 cells l−1 within the bloom. The lowest surface pCO2 observed was 287 µatm at the southern end of the transect covarying with surface chlorophyll of 1.090 µg l−1. At the northern end the surface pCO2 went as low as 313 µatm. The pCO2 levels below the mixed layer increased twice of that of surface value (~600 µatm). The chlorophyll values observed by Ocean Colour Monitor-2 were modestly related with the in situ measurements. The primary productivity derived from growth rate, assimilation number and maximum surface chlorophyll was 160.6 mg C m−2 day−1 leading to a modest sequestration ~of 0.08 Gg of carbon per day by the surface waters. Our observations reflects the potential role of diatom blooms on coastal carbon dynamics therefore should be carefully monitored in realm of anthropogenic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Álvarez-Salgado, X. A., Nieto-Cid, M., Piedracoba, S., Crespo, B. G., Gago, J., Brea, S., & Castro, C. G. (2005). Origin and fate of a bloom of Skeletonemacostatum during a winter upwelling/downwelling sequence in the Ría de Vigo (NW Spain). Journal of Marine Research, 63(6), 1127–1149.

    Article  Google Scholar 

  • Arrigo, K. R., Robinson, D. H., Worthen, D. L., Dunbar, R. B., DiTullio, G. R., VanWoert, M., & Lizotte, M. P. (1999). Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science, 283(5400), 365–367.

    Article  Google Scholar 

  • Borges, A. V. (2005). Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries, 28(1), 3–27.

    Article  Google Scholar 

  • Cai, W. J., Dai, M., & Wang, Y. (2006). Air‐sea exchange of carbon dioxide in ocean margins: A province‐based synthesis. Geophysical Research Letters, 33(12), L12603.

  • Chen, C. T. A., & Borges, A. V. (2009). Reconciling opposing views on carbon cycling in the coastal ocean: continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO 2. Deep Sea Research Part II: Topical Studies in Oceanography, 56(8), 578–590.

    Article  Google Scholar 

  • Cloern, J. E. (1996). Phytoplankton bloom dynamics in coastal ecosystems: A review with some general lessons from sustained investigation of San Francisco Bay, California. Reviews of Geophysics, 34(2), 127–168.

    Article  Google Scholar 

  • Eppley, R. W. (1972). Temperature and phytoplankton growth in the sea. Fishery Bulletin, 70(4), 1063–1085.

    Google Scholar 

  • Gattuso, J. P., Frankignoulle, M., Bourge, I., Romaine, S., & Buddemeier, R. W. (1998). Effect of calcium carbonate saturation of seawater on coral calcification. Global and Planetary Change, 18(1), 37–46.

    Article  Google Scholar 

  • Gruber, N., Gloor, M., Sara, E., Fletcher, M., Doney S. C., Dutkiewicz, S., Follows, M. J., Gerber, M., Jacobson, A. R., Joos, F., Lindsay, K., Menemenlis, D., Mouchet, A., Muller, S. A., Sarmiento, J. L., & Takahashi, T. (2009). Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochemical Cycles, 23(1). doi:10.1029/2008GB003349.

  • Han, M. S., & Furuya, K. (2000). Size and species-specific primary productivity and community structure of phytoplankton in Tokyo Bay. Journal of Plankton Research, 22(7), 1221–1235.

    Article  Google Scholar 

  • Howden, S. D., & Murtugudde, R. (2001). Effects of river inputs into the Bay of Bengal. Journal of Geophysical Research: Oceans, 106(C9), 19825–19843.

    Article  Google Scholar 

  • IPCC (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1132 pp.

  • Laruelle, G. G., Dürr, H. H., Slomp, C. P., & Borges, A. V. (2010). Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially‐explicit typology of estuaries and continental shelves. Geophysical Research Letters, 37(15), L15607.

  • Lévy, M., Shankar, D., André, J.-M., Shenoi, S. S. C., Durand, F., & de Boyer Montégut, C. (2007). Basin-wide seasonal evolution of the Indian Ocean's phytoplankton blooms. Journal of Geophysical Research, 112(C12), C12014. doi:10.1029/2007JC004090.

  • Lewis, E., & Wallace, D. W. R. (1998). Program developed for CO2 system calculations, Rep. ORNL/CDIAC-105. Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn.

  • Mackey, M. D., Mackey, D. J., Higgins, H. W., & Wright, S. W. (1996) CHEMTAX – a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Marine Ecology Progress Series, 144, 265–283.

    Article  Google Scholar 

  • Madhupratap, M., Gauns, M., Ramaiah, N., Kumar, S. P., Muraleedharan, P. M., De Sousa, S. N., & Muraleedharan, U. (2003). Biogeochemistry of the Bay of Bengal: Physical, chemical and primary productivity characteristics of the central and western Bay of Bengal during summer monsoon 2001. Deep Sea Research Part II: Topical Studies in Oceanography, 50(5), 881–896.

    Article  Google Scholar 

  • Merlivat, L., Boutin, J., & Antoine, D. (2015). Roles of biological and physical processes in driving seasonal air–sea CO2 flux in the Southern Ocean: New insights from CARIOCA pCO2. Journal of Marine Systems, 147, 9–20.

    Article  Google Scholar 

  • Muller‐Karger, F. E., Varela, R., Thunell, R., Luerssen, R., Hu, C., & Walsh, J. J. (2005). The importance of continental margins in the global carbon cycle. Geophysical Research Letters, 32(1), L01602.

  • Nagamani, P. V., Hussain, M. I., Choudhury, S. B., Panda, C. R., Sanghamitra, P., Kar, R. N., et al. (2013). Validation of chlorophyll-a algorithms in the coastal waters of Bay of Bengal initial validation results from OCM-2. Journal of the Indian Society of Remote Sensing, 41(1), 117–125.

    Article  Google Scholar 

  • Prasanna Kumar, S., Muraleedharan, P. M., Prasad, T. G., Gauns, M., Ramaiah, N., De Souza, S. N., Sardesai, S., & Madhupratap, M. (2002). Why is the Bay of Bengal less productive during summer monsoon compared to the Arabian Sea? Geophysical Research Letters 29(24), 88.1–88.4.

    Article  Google Scholar 

  • Rao, C. K., Naqvi, S. W. A., Kumar, M. D., Varaprasad, S. J. D., Jayakumar, D. A., George, M. D., & Singbal, S. Y. S. (1994). Hydrochemistry of the Bay of Bengal: possible reasons for a different water-column cycling of carbon and nitrogen from the Arabian Sea. Marine Chemistry, 47(3), 279–290.

    Article  Google Scholar 

  • Rao, V. D., Viswanadham, R., Bharathi, M. D., Sarma, V. V. S. S., & Kumar, M. D. (2015). Impact of river discharge on distribution of dimethyl sulfide (DMS) and its fluxes in the coastal Bay of Bengal. Journal of Sea Research, 103, 32–41.

    Article  Google Scholar 

  • Riebesell, U. (2004). Effects of CO2 enrichment on marine phytoplankton. Journal of Oceanography, 60(4), 719–729.

    Article  Google Scholar 

  • Riebesell, U., Zondervan, I., Rost, B., Tortell, P. D., Zeebe, R. E., & Morel, F. M. (2000). Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 407(6802), 364–367.

    Article  Google Scholar 

  • Roy, R., Pratihary, A., Mangesh, G., & Naqvi, S. W. A. (2006). Spatial variation of phytoplankton pigments along the southwest coast of India. Estuarine, Coastal and Shelf Science, 69(1), 189–195.

    Article  Google Scholar 

  • Sardessai, S., Ramaiah, N., Prasanna Kumar, S., & De Sousa, S. N. (2007). Influence of environmental forcings on the seasonality of dissolved oxygen and nutrients in the Bay of Bengal. Journal of Marine Research, 65(2), 301–316.

    Google Scholar 

  • Sarma, V. V. S. S., Gupta, S. N. M., Babu, P. V. R., Acharya, T., Harikrishnachari, N., Vishnuvardhan, K., & Murty, T. V. R. (2009). Influence of river discharge on plankton metabolic rates in the tropical monsoon driven Godavari estuary, India. Estuarine, Coastal and Shelf Science, 85(4), 515–524.

    Article  Google Scholar 

  • Sarma, V. V. S. S., Krishna, M. S., Rao, V. D., Viswanadham, R., Kumar, N. A., Kumar, T. R., Gawade, L., Ghatkar, S., & Tari, A. (2012). Sources and sinks of CO2 in the west coast of Bay of Bengal. Tellus-B, 64, 10961, doi:10.3402/tellusb.v6i0.10961.

  • Sarma, V. V. S. S., Delabehra, H. B., Sudharani, P., Remya, R., Patil, J. S., & Desai, D. V. (2015). Variations in the inorganic carbon components in the thermal fronts during winter in the northeastern Arabian Sea. Marine Chemistry, 169, 16–22.

    Article  Google Scholar 

  • Schippers, P., Lürling, M., & Scheffer, M. (2004). Increase of atmospheric CO2 promotes phytoplankton productivity. Ecology Letters, 7(6), 446–451.

    Article  Google Scholar 

  • Schlüter, L., Møhlenberg, F., Havskum H., & Larsen S. (2000). The use of phytoplankton pigments for identifying and quantifying phytoplankton groups in coastal areas; testing the influence of light and nutrients on pigment/chlorophyll a-ratios. Marine Ecology Progress Series, 192, 49–63.

    Article  Google Scholar 

  • Schott, F. A., & McCreary, J. P. (2001). The monsoon circulation of the Indian Ocean. Progress in Oceanography, 51(1), 1–123.

    Article  Google Scholar 

  • Sengupta, D., Bharath Raj, G. N., & Shenoi, S. S. C. (2006). Surface freshwater from Bay of Bengal runoff and Indonesian Throughflow in the tropical Indian Ocean. Geophysical Research Letters, 33(22), L22609. doi:10.1029/2006GL027573.

  • Shetye, S. R., Gouveia, A. D., Shankar, D., Shenoi, S. S. C., Vinayachandran, P. N., Sundar, D., & Nampoothiri, G. (1996). Hydrography and circulation in the western Bay of Bengal during the northeast monsoon. Journal of Geophysical Research: Oceans, 101(C6), 14011–14025.

    Article  Google Scholar 

  • Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., & Watson, A. (2009). Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Research Part II: Topical Studies in Oceanography, 56(8), 554–577.

    Article  Google Scholar 

  • Tortell, P. D., Payne, C. D., Li, Y., Trimborn, S., Rost, B., Smith, W. O., Riesselman, C., Dunbar, R. B., Sedwick, P., & DiTullio, G. R. (2008). CO2 sensitivity of Southern Ocean phytoplankton. Geophysical Research Letters, 35(4), L04605. doi:10.1029/2007GL032583.

  • Vinayachandran, P. N., Murty, V. S. N., & Ramesh Babu, V. (2002). Observations of barrier layer formation in the Bay of Bengal during summer monsoon. Journal of Geophysical Research: Oceans, 107(C12), 8018.

  • Wiggert, J. D., Hood, R. R., Banse, K., & Kindle, J. C. (2005). Monsoon-driven biogeochemical processes in the Arabian Sea. Progress in Oceanography, 65(2), 176–213.

    Article  Google Scholar 

  • Wright, S. W., & van den Enden, R. L. (2000). Phytoplankton community structure and stocks in the East Antarctic marginal ice zone (BROKE survey, January–March 1996) determined by CHEMTAX analysis of HPLC pigment signatures. Deep Sea Research Part II: Topical Studies in Oceanography, 47(12), 2363–2400.

    Article  Google Scholar 

  • Wright, S. W., van den Enden, R. L., Pearce, I., Davidson, A. T., Scott, F. J., & Westwood, K. J. (2010). Phytoplankton community structure and stocks in the Southern Ocean (30–80 E) determined by CHEMTAX analysis of HPLC pigment signatures. Deep Sea Research Part II: Topical Studies in Oceanography, 57(9), 758–778.

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out as a part of the National Carbon Project (NCP) of ISRO-IGBP. Authors would like programme director ISRO IGBP and Chairman ISRO for their constant encouragement and support. PL would like to thank ISRO for her research support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajdeep Roy.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, R., Rao, K.H., Latha, T.P. et al. Satellite and In Situ Observations of a Phytoplankton Bloom from Coastal Bay of Bengal: Role in pCO2 Modulation. J Indian Soc Remote Sens 45, 513–524 (2017). https://doi.org/10.1007/s12524-016-0604-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-016-0604-3

Keywords

Navigation