Skip to main content
Log in

A promising sol-gel method to synthesize NaVO3 as anode material for lithium ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The NaVO3 sample has been successfully fabricated via a simple sol-gel method adding Na2CO3 and V2O5 powders into distilled water with citric acid to act as a chelating reagent. X-ray diffraction with Rietveld refinement result shows that single-phase NaVO3 can be obtained by our method. The differences caused by different sintering temperature exist in X-ray diffraction and scanning electron microscope (SEM), showing that sintering temperature has an important influence on crystal growth and grain size stabilization. When evaluated as an anode material for lithium-ion batteries, the nanosize NaVO3 electrode displays a discharge and recharge capacity of 623.8 and 355.6 mAh g−1 in the first cycle, while a reversible discharge-charge capacity of ∼250 mAh g−1 can be retained after 30 cycles. For comparison, the electrochemical properties of microsize NaVO3 prepared at a higher temperature are also displayed. Furthermore, the structure change of NaVO3 and its Li storage mechanism upon lithiation and delithiation process are studied by ex situ XRD and TEM in below.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goodenough JB, Park KS (2013) The Li-Ion Rechargeable Battery: a Perspective. J Am Chem Soc 135:1167–1176

    Article  CAS  Google Scholar 

  2. Su L, Jing Y, Zhou Z (2011) Li ion battery materials with core-shell nanostructures. Nanoscale 3:3967–3983

    Article  CAS  Google Scholar 

  3. Aric AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  Google Scholar 

  4. Simon S, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  5. Noorden RV (2014) The rechargeable revolution: a better battery. Nat Mater 507:26–28

    Article  Google Scholar 

  6. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    Article  CAS  Google Scholar 

  7. Laruelle S, Grugeon S, Poizot P, Dolle M, Dupont L, Tarascon JM (2002) On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J Electrochem Soc 149:A627–A634

    Article  CAS  Google Scholar 

  8. Li WY, Xu LN, Chen J (2005) Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv Funct Mater 15:851–857

    Article  CAS  Google Scholar 

  9. Taberna PL, Mitra S, Poizot P, Simon P, Tarascon JM (2006) High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Mater 5:567–573

    Article  CAS  Google Scholar 

  10. Zhang WM, Wu XL, Hu JS, Guo YG, Wan LJ (2008) Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv Funct Mater 18:3941–3946

    Article  CAS  Google Scholar 

  11. Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946

    Article  CAS  Google Scholar 

  12. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301

    Article  CAS  Google Scholar 

  13. Whittingham MS (1976) Electrical energy storage and intercalation chemistry. Science 192:1126–1127

    Article  CAS  Google Scholar 

  14. Mishra KM, Lal AK, Haque FZ (2004) Ionic and electronic conductivity in some alkali vanadates. Solid State Ionics 167:137–146

    Article  CAS  Google Scholar 

  15. Song JH, Park HJ, Kim KJ, Jo YN, Kim JS, Jeong YU, Kim YJ (2010) Electrochemical characteristics of lithium vanadate, Li1 + x VO2, new anode materials for lithium ion batteries. J Power Sources 195:6157–6161

    Article  CAS  Google Scholar 

  16. West K, Zachau-Christiansen B, Jacobsen T, Atlung S (1985) V6O13 As cathode material for lithium cells. J Power Sources 14:235–245

    Article  CAS  Google Scholar 

  17. Xiao L, Zhao Y, Yin J, Zhang L (2009) Clewlike ZnV2O4 Hollow Spheres: Nonaqueous Sol-Gel Synthesis, Formation Mechanism, and Lithium Storage Properties. Chem Eur J 15:9442–9450

    Article  CAS  Google Scholar 

  18. Denis S, Baudrin E, Touboul M, Tarascon JM (1997) Synthesis and Electrochemical Properties of Amorphous Vanadates of General Formula RVO4 (R = In, Cr, Fe, Al, Y) vs. Li. J Electrochem Soc 144:4099–4109

    Article  CAS  Google Scholar 

  19. Pistoia G, Pasquali M, Tocci M, Moshtev RV, Manev V (1985) Li/Li1 + x V3O8 Secondary Batteries III. Further Characterization of the Mechanism of Li+ Insertion and of the Cycling Behavior. J Electrochem Soc 32:281–284

    Article  Google Scholar 

  20. Pralong V, Gopal V, Caignaert V, Duffort V, Raveau B (2012) Lithium-Rich Rock-Salt-Type Vanadate as Energy Storage Cathode: Li2–x VO3. Chem Mater 24:12–14

    Article  CAS  Google Scholar 

  21. Qiao Y, Tu J, Wang X, Zhang J, Yu Y, Gu C (2011) Self-Assembled Synthesis of Hierarchical Waferlike Porous Li-V-O Composites as Cathode Materials for Lithium Ion Batteries. J Phys Chem C 115:25508–25518

    Article  CAS  Google Scholar 

  22. Li H, Liu X, Zhai T, Li D, Zhou H (2013) Li3VO4: A Promising Insertion Anode Material for Lithium-Ion Batteries. Adv Energy Mater 3:428–432

    Article  CAS  Google Scholar 

  23. Kim WT, Jeong YU, Lee YJ, Kim YJ, Song JH (2013) Synthesis and lithium intercalation properties of Li3VO4 as a new anode material for secondary lithium batteries. J Power Sources 244:557–560

    Article  CAS  Google Scholar 

  24. Liang ZZ, Lin ZP, Zhao YM (2015) New understanding of Li3VO4/C as potential anode for Li-ion batteries: Preparation, structure characterization and lithium insertion mechanism. J Power Sources 274:345–354

    Article  CAS  Google Scholar 

  25. Venkatesh G, Pralong V, Lebedev OI, Caignaert V, Bazin P, Raveau B (2014) Amorphous sodium vanadate Na1.5 + y VO3, a promising matrix for reversible sodium intercalation. Electrochemistry Communications 40:100–102

    Article  CAS  Google Scholar 

  26. Ni SB, Ma JJ, Zhang JC, Yang XL (2014) Preparation method of lithium-ion battery negative electrode material. China patent:CN104393241

  27. Larson AC, Von Dreele RB (2004) VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. Los Alamos National Laboratory Report LAUR, pp 86-748

  28. Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Applied Crystallography 34:210–213

    Article  CAS  Google Scholar 

  29. Mendialdua J, Casonova R, Barbaux Y (1995) XPS studies of V2O5, V6O13, VO2 and V2O3. J Electron Spectroscopy and Related Phenomena 71:249–261

    Article  CAS  Google Scholar 

  30. Cameron M, Sueno S, Prewitt CT, Papike JJ (1973) High-Temperature Grystal Ghemistry of Acmite, Diopside, Hedenbergite, Jadeite, Spodumene, and Ureyite. American Mineralogist 58:594–618

    CAS  Google Scholar 

  31. Zhang WK, Zhou XZ, Tao XY, Huang H, Gan YP, Wang CT (2010) In situ construction of carbon nano-interconnects between the LiFePO4 grains using ultra low-cost asphalt. Electrochim Acta 55:2592–2596

    Article  CAS  Google Scholar 

  32. Rui XH, Li C, Chen CH (2009) Synthesis and characterization of carbon-coated Li3V2(PO4)3 cathode materials with different carbon sources. Electrochim Acta 54:3374–3380

    Article  CAS  Google Scholar 

  33. Zhang D, Popov BN, White RE (1998) Electrochemical investigation of CrO2.65 doped LiMn2O4 as a cathode material for lithium-ion batteries. J Power Sources 76:81–90

    Article  CAS  Google Scholar 

  34. Liu XD, Zhao YM (2015) Synthesis of Carbon-coated Nanoplate α-Na2MoO4 and its Electrochemical Lithiation Process as Anode Material for Lithium-ion Batteries. Electrochim Acta 154:94–101

    Article  CAS  Google Scholar 

  35. Sharma Y, Sharma N, Rao GVS, Chowdari BVR (2008) Studies on spinel cobaltites, FeCo2O4 and MgCo2O4 as anodes for Li-ion batteries. Electrochim Acta 179:587–597

    CAS  Google Scholar 

  36. Kang YM, Song MS, Kim JH, Kim HS, Park MS, Lee JY, Liu HK, Dou SX (2005) A study on the charge-discharge mechanism of Co3O4 as an anode for the Li ion secondary battery. Electrochim Acta 50:3667–3673

    Article  CAS  Google Scholar 

  37. Ryu JH, Kim JW, Sung YE, Oh SM (2004) Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries. Electrochem Solid-State Lett 7:A306–A309

    Article  CAS  Google Scholar 

  38. Jung YS, Lee KT, Ryu JH, Im D, Oh SM (2005) Sn-Carbon Core-Shell Powder for Anode in Lithium Secondary Batteries. J Electrochem Soc 152:A1452–A1457

    Article  CAS  Google Scholar 

  39. Jung YS, Lee KT, Oh SM (2007) Si-carbon core-shell composite anode in lithium secondary batteries. Electrochim Acta 52:7061–7076

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by NSFC Grant (nos. 51372089, 51172077, and 51373205) supported through NSFC Committee of China, and the Foundation of (no. 2014ZB0014) supported through the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanming Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhao, Y., Dong, Y. et al. A promising sol-gel method to synthesize NaVO3 as anode material for lithium ion batteries. J Solid State Electrochem 20, 1803–1812 (2016). https://doi.org/10.1007/s10008-016-3188-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3188-5

Keywords

Navigation