Skip to main content
Log in

Composition depth profile analysis of electrodeposited alloys and metal multilayers: the reverse approach

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The reverse depth profile analysis is a recently developed method for the study of a deposit composition profile in the near-substrate zone. The sample preparation technique enables one to separate the deposit and a thin cover layer from its substrate, and the initial roughness of the sample is much smaller than in the conventional sputtering direction. This technique is particularly suitable to study the zones being formed in the early phase of the electrodeposition of alloys. It has been demonstrated with the reverse depth profile analysis that in many cases when one component of an alloy is preferentially deposited, an initial zone is formed that is rich in the preferentially deposited component. This phenomenon is demonstrated for Ni–Cd, Ni–Sn, Fe–Co–Ni, Co–Ni, and Co–Ni–Cu alloys. The composition change is confined to the initial 150-nm-thick deposit, and it is the result of the interplay of the deposition preference and the depletion of the electrolyte near the cathode with respect to the ion reduced preferentially. The reverse depth profile analysis made it possible to compare the measured and the calculated composition depth profile of electrodeposited multilayers. It has been shown that the decay in the composition oscillation intensity in Co/Cu multilayers with the increase of the sputtering depth can be derived from the roughness measured as a function of the deposit thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Hightower A, Koel B, Felter T (2009) Electrochim Acta 54:1777–1783

    Article  CAS  Google Scholar 

  2. Palacio C, Ocón P, Herrasti P, Díaz D, Arranz A (2003) J Electroanal Chem 545:53–58

    Article  CAS  Google Scholar 

  3. Kossoy E, Khoptiar Y, Cytermann C, Shemesh G, Katz H, Sheinkopf H, Cohen I, Eliaz N (2008) Corros Sci 50:1481–1491

    Article  CAS  Google Scholar 

  4. Stangl M, Acker J, Oswald S, Uhlemann M, Gemming T, Baunack S, Wetzig K (2007) Microel Eng 84:54–59

    Article  CAS  Google Scholar 

  5. Favry E, Frederich N, Meunier A, Omnes L, Jomard F, Etcheberry A (2008) Electrochim Acta 53:7004–7011

    Article  CAS  Google Scholar 

  6. Martín AJ, Chaparro AM, Gallardo B, Folgado MA, Daza L (2009) J Power Sources 192:14–20

    Article  Google Scholar 

  7. Bardi U, Caporali S, Chenakin SP, Lavacchi A, Miorin E, Pagura C, Tolstogouzov A (2006) Surf Coat Technol 200:2870–2874

    Article  CAS  Google Scholar 

  8. Nakanishi S, Sakai S, Nagai T, Nakato Y (2005) J Phys Chem B 109:1750–1755

    Article  CAS  Google Scholar 

  9. Padhi D, Gandikota S, Nguyen HB, McGuirk C, Ramanathan S, Yahalom J, Dixit G (2003) Electrochim Acta 48:935–943

    Article  CAS  Google Scholar 

  10. Gómez E, Pllicier E, Vallés E (2003) J Appl Electrochem 33:245–252

    Article  Google Scholar 

  11. Dulal SMSI, Yun HJ, Shin CB, Kim CK (2009) Appl Surf Sci 255:5795–5801

    Article  CAS  Google Scholar 

  12. Koo HC, Cho SK, Kwon OJ, Suh MW, Im Y, Kim JJ (2009) J Electrochem Soc 156:D236–D241

    Article  CAS  Google Scholar 

  13. Pisarek M, Janik-Czachor M, Donten M (2008) Surf Coat Technol 202:1980–1984

    Article  CAS  Google Scholar 

  14. Sakai S, Nakanishi S, Nakato Y (2006) J Phys Chem B 110:11944–11949

    Article  CAS  Google Scholar 

  15. Shimizu K, Brown GM, Habazaki H, Kobayashi K, Skeldon P, Thompson GE, Wood GC (2001) Corros Sci 43:199–205

    Article  CAS  Google Scholar 

  16. Egberts P, Brodersen P, Hibbard GD (2006) Mat Sci Eng A 441:336–341

    Article  Google Scholar 

  17. Ahadian MM, Irajizad A, Nouri E, Ranjbar M, Dolati A (2007) J Alloy Comp 443:81–86

    Article  CAS  Google Scholar 

  18. Ranjbar M, Ahadian MM, Irajizad A, Dolati A (2006) Mat Sci Eng B 127:17–21

    Article  CAS  Google Scholar 

  19. Angeli J, Kaltenbrunner T, Androsch (1991) Fresenius J Anal Chem 341:140–144

    Article  CAS  Google Scholar 

  20. Csik A, Vad K, Tóth-Kádár E, Péter (2009) Electrochem Commun 11:1289–1291

    Article  CAS  Google Scholar 

  21. Péter L, Csik A, Vad K, Tóth-Kádár E, Pekker Á, Molnár G (2010) Electrochim Acta 55:4734–4741

    Article  Google Scholar 

  22. Iselt D, Gaitzsch U, Oswald S, Fähler S, Schultz L, Schlörb H (2011) Electrochim Acta 56:5178–5183

    Google Scholar 

  23. Leistner K, Thomas J, Baunack S, Schlörb H, Schultz L, Fähler S (2005) J Magn Magn Mater 290–291:1270–1273

    Article  Google Scholar 

  24. Lukaszewski M, Klimek K, Czerwinski A (2009) J Electroanal Chem 637:13–20

    Article  CAS  Google Scholar 

  25. Papadimitriou S, Armyanov S, Valova E, Hubin A, Steenhaut O, Pavlidou E, Kokkinidis G, Sotiropoulos S (2010) J Phys Chem C 114:5217–5223

    Article  CAS  Google Scholar 

  26. Gupta D, Nayak AC, Sharma M, Singh RR, Kulkarni SK, Pandey RK (2006) Thin Solid Films 513:187–192

    Article  CAS  Google Scholar 

  27. Péter L, Katona GL, Berényi Z, Vad K, Langer GA, Tóth-Kádár E, Pádár J, Pogány L, Bakonyi I (2007) Electrochim Acta 53:837–845

    Article  Google Scholar 

  28. Katona GL, Berényi Z, Péter L, Vad K (2008) Vacuum 82:270–273

    Article  Google Scholar 

  29. Bartók A, Csik A, Vad K, Molnár G, Tóth-Kádár E, Péter L (2009) J Electrochem Soc 156:D253–D260

    Article  Google Scholar 

  30. Csik A, Vad K, Langer GA, Katona GL, Tóth-Kádár E, Péter L (2010) Vacuum 84:141–143

    Article  Google Scholar 

  31. Hernández-Vélez M, Pirota KL, Pászti F, Navas D, Climent A, Vázquez M (2005) Appl Phys A 80:1701–1706

    Article  Google Scholar 

  32. Vázquez M, Hernández-Vélez M, Pirota K, Asenjo A, Navas D, Velázquez J, Vargas P, Ramos C (2004) Eur Phys J B 40:489–497

    Article  Google Scholar 

  33. Singh S, Basu S, Ghosh SK (2009) Appl Surf Sci 255:5910–5916

    Article  CAS  Google Scholar 

  34. Takahashi M, Kojima M, Sato S, Ohnisi N, Nishiwaki A, Wakita K, Miyuki T, Ikeda S, Muramatsu Y (2004) J Appl Phys 96:5582–5587

    Article  CAS  Google Scholar 

  35. Kang SH, Kim YK, Choi DS, Sung YE (2006) Electrochim Acta 51:4433–4438

    Article  CAS  Google Scholar 

  36. Calixto ME, Sebastian PJ (2000) Solar Energy Materials & Solar Cells 63:335–345

    Article  CAS  Google Scholar 

  37. Nauer M, Ernst K, Kautek W, Neumann-Spallart M (2005) Thin Solid Films 489:86–93

    Article  CAS  Google Scholar 

  38. Rogers KD, Wood DA, Painter JD, Lane DW, Ozsan ME (2000) Thin Solid Films 361–362:234–238

    Article  Google Scholar 

  39. Seipel B, Nadarajah A, Wutzke B, Könenkamp R (2009) Mater Lett 63:736–738

    Article  CAS  Google Scholar 

  40. Lu M, Cheng H, Yang Y (2008) Electrochim Acta 53:3539–3546

    Article  CAS  Google Scholar 

  41. Cheng H, Zhu C, Lu M, Yang Y (2007) J Power Sources 173:531–537

    Article  CAS  Google Scholar 

  42. Saito Y, Rahman MK (2007) J Power Sources 174:877–882

    Article  CAS  Google Scholar 

  43. Kowalski D, Aoki Y, Habazaki H (2009) Angew Chem Int Ed 48:7582–7585, Supporting information

    Article  CAS  Google Scholar 

  44. Shimizu K, Habazaki H, Skeldon P, Thompson GE, Wood GC (2000) Electrochim Acta 45:1805–1809

    Article  CAS  Google Scholar 

  45. Benzakour J, Derja A (1997) J Electroanal Chem 437:119–124

    Article  CAS  Google Scholar 

  46. Crossland AC, Thompson GE, Smith CJE, Habazaki H, Shimizu K, Skeldon P (1999) Corros Sci 41:2053–2069

    Article  CAS  Google Scholar 

  47. Wener Z, Jaskiewicz A, Pisarek M, Janik-Czachor M, Barlak M (2005) Z Phys Chem 219:1461–1479

    Article  Google Scholar 

  48. Suleiman A, Hashimoto T, Skeldon P, Thompson GE, Echeverria F, Graham MJ, Sproule GI, Moisa S, Habazaki H, Bailey P, Noakes TCQ (2008) Corr Sci 50:1353–1359

    Article  CAS  Google Scholar 

  49. Cho EA, Ahn SJ, Kwon HS (2005) Electrochim Acta 50:3383–3389

    Article  CAS  Google Scholar 

  50. Mohanty US, Lin KL (2007) J Mater Res 22:2573–2581

    Article  CAS  Google Scholar 

  51. Sziráki L, Cziráki A, Vértesy, Kiss L, Ivanova V, Raichevski G, Vitkova S, Marinova S (1999) J Appl Electrochem 29:927–937

    Article  Google Scholar 

  52. Janik-Czachor M, Pisarek M (2009) In: Pyun SI, Lee JW (eds) Modern aspects of electrochemistry 46, Chapter 3. New York, Springer, pp 175–230

    Chapter  Google Scholar 

  53. Sosa E, Cabrera-Sierra R, Oropeza MT, Hernández F, Casillas N, Tremont R, Cabrera C, González I (2003) Electrochim Acta 48:1665–1674

    Article  CAS  Google Scholar 

  54. Kowalski D, Ueda M, Ohtsuka T (2007) Corros Sci 49:3442–3452

    Article  CAS  Google Scholar 

  55. Kazeminezhad I, Blythe HJ, Schwarzacher W (2001) Appl Phys Lett 78:1014–1016

    Article  CAS  Google Scholar 

  56. Kazeminezhad I, Schwarzacher W (2001) J Magn Magn Mater 226:1650–1652

    Article  Google Scholar 

  57. Kazeminezhad I, Schwarzacher W (2002) J Magn Magn Mater 240:467–468

    Article  CAS  Google Scholar 

  58. Kazeminezhad I, Schwarzacher W (2004) J Solid State Electrochem 8:187–189

    Article  CAS  Google Scholar 

  59. Massalski TB (ed) (1996) Binary alloy phase diagrams, second edition plus updates on CD-ROM. ASM International, Materials Park

  60. Mohanty US, Tripathy BC, Singh P, Das SC (2004) J Electroanal Chem 566:47–52

    Article  CAS  Google Scholar 

  61. Mohanty US, Tripathy BC, Singh P, Das SC (2002) J Electroanal Chem 526:63–68

    Article  CAS  Google Scholar 

  62. Liu X, Zangari G, Shen L (2000) J Appl Phys 87:5410–5412

    Article  CAS  Google Scholar 

  63. Tabakovich I, Inturi V, Riemer S (2002) J Electrochem Soc 149:C18–C22

    Article  Google Scholar 

  64. Perez L, Attenborough K, De Boeck J, Celis JP, Aroca C, Sánchez P, López E, Sánchez MC (2002) J Magn Magn Mater 242–245:163–165

    Article  Google Scholar 

  65. Liu X, Zangari G, Shamsuzzoha M (2003) J Electrochem Soc 150:C159–C168

    Article  CAS  Google Scholar 

  66. Van Cittert PH (1931) Z Phys 69:298

    Article  Google Scholar 

  67. Escobar Galindo R, Albella JM (2008) Spectrochim Acta B 63:422–430

    Article  Google Scholar 

  68. Escobar Galindo R, Forniés E, Albella JM (2005) J Anal At Spectrom 20:116–1120

    Google Scholar 

Download references

Acknowledgments

K. Neuróhr and L. Péter acknowledge Prof. György Inzelt for his support and his outstanding activity in the education of electrochemistry. The present work was funded by the Hungarian Scientific Research Fund (OTKA) through grant # NN 79846.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Péter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuróhr, K., Csik, A., Vad, K. et al. Composition depth profile analysis of electrodeposited alloys and metal multilayers: the reverse approach. J Solid State Electrochem 15, 2523–2544 (2011). https://doi.org/10.1007/s10008-011-1465-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1465-x

Keywords

Navigation