Skip to main content
Log in

Intercalation and dynamics of hydrated Fe2+ in the vermiculites from Santa Olalla and Ojén

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Although the intercalation of Fe3+ into layered phyllosicilicates—especially into smectites—attracted much attention in the past two decades, the information about Fe2+ loaded phyllosilicates is sparse. Here we present an investigation of the Fe2+ exchanged vermiculites from Santa Olalla and Ojén (Andalusia, Spain) by means of Mössbauer spectroscopy. The room temperature Mössbauer spectra are very similar to those of the starting compounds (Na forms) except for a decrease of the contribution of structural Fe3+ and a concomitant increase of the contribution of Fe2+ sites, indicating an internal redox process. The extent of this redox reaction is different for the two vermiculites. Thus, the intercalated Fe2+ acts as an electron mediator from the external medium to the structural Fe3+ ions. A new component attributable to intercalated Fe2+ is practically invisible in the room temperature Mössbauer spectra, but increases strongly and continuously during cooling to 4.2 K, where it is the dominant feature of the Mössbauer patterns. At 4.2 K, its quadruple splitting amounts to 3.31 mm/s, which is in excellent agreement with the quadrupole slitting of Fe2+ coordinated to six water molecules in a highly symmetric octahedral arrangement. The strong decrease of the Mössbauer–Lamb factor of this component with increasing temperature indicates a weak bonding of the Fe2+ in the interlayer space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rigthor EG, Tzou MS, Pinnavaia TJ (1991) J Catal 130:29

    Article  Google Scholar 

  2. Gil A, Gandía LM, Vicente MA (2000) Catal Rev Sci Eng 42:145

    Article  CAS  Google Scholar 

  3. Manju M, Sugunan S (2005) React Kinet Catal 85:37

    Article  CAS  Google Scholar 

  4. Zhoua CH, Tonga DS, Baoa M, Dub ZX, Gea ZH, Li XN (2008) Top Catal 39:213

    Article  Google Scholar 

  5. Oates JM (1984) Clays Clay Miner 37:49

    Article  Google Scholar 

  6. Moreale A, Cloos P, Badot C (1985) Clay Miner 20:29

    Article  CAS  Google Scholar 

  7. Helson JA, Goodman BA (1983) Clay Miner 18:117

    Article  Google Scholar 

  8. Goodman BA, Helsen JA, Langouche G (1988) Hyperfine Interact 41:799

    Article  CAS  Google Scholar 

  9. Ramírez-Valle V, Lerf A, Wagner FE, Poyato J, Pérez-Rodríguez JL (2008) Clay Miner 43:487

    Article  Google Scholar 

  10. Kamei G, Oda C, Mitsui S, Shibata M, Shinozaki T (1999) Eng Geol 54:15

    Article  Google Scholar 

  11. Kozai N, Adachi Y, Kawamura S, Inada K, Kozaki T, Sato S, Ohashi H, Ohnuki T, Banba T (2001) J Nucl Sci Techn 38:1141

    Article  CAS  Google Scholar 

  12. Charlet L, Tournassat C (2005) Aquatic Geochem 11:115

    Article  CAS  Google Scholar 

  13. Géhin A, Grenèche JM, Tournassat C, Brendlé J, Rancourt DG, Charlet L (2007) Geochim Cosmochim Acta 71:863

    Article  Google Scholar 

  14. Stucki JW, Goodman BA, Schwertmann U (1988) Iron in soils and clay minerals. Reidel, Dordrecht

    Google Scholar 

  15. Fischer WR (1988) In: Stucki JW, Goodman BA, Schwertmann U (eds) Iron in soils and clay minerals, chapt. 20. Reidel, Dordrecht, p 715

    Google Scholar 

  16. Stucki JW (2006) in Bergaya F. Theng BKG, Lagaly G, (eds.) Handbook of clay science, Elsevier, Vol. 1, chapt. 8, p. 423

  17. Stanjek H, Marchel C (2008) Clay Miner 43:62

    Article  Google Scholar 

  18. Komadel P, Grygar T, Mehner H (1998) Clay Miner 33:593

    CAS  Google Scholar 

  19. Bailey SW (1988) In: Bailey SW (ed) Reviews inmMineralogy, Vol. 19. Mineralogical Society, Washington D.C., p 347

    Google Scholar 

  20. Laird J (1988) In: Bailey SW (ed) Reviews in mineralogy, Vol. 19. Mineralogical Society, Washington D.C., p 405

    Google Scholar 

  21. Gould K, Pe-Piper G, David JW, Piper DJW (2910) Sedimentology 57:587

    Article  Google Scholar 

  22. Sandström B, Annersten H, Tullborg EL (2010) Int J Earth Sci 99:1

    Article  Google Scholar 

  23. Poyato J, Pérez-Rodríguez JL, Ramírez-Valle V, Lerf A, Wagner FE (2009) Ultrasonics Sonication 16:570

  24. Justo Erbez AJ (1984) Estudio fisicoquímico y mineralógico de vermiculitas de Andalucía y Badajoz. Ph.D. Thesis, Sevilla

  25. Wagner FE, Lerf A, Poyato Ferrera J, Justo A, Perez Rodriguez JL (2001) In: Rammelmair D, Mederer J, Oberthür T, Heimann RB, Pettinghaus H (eds) Applied mineralogy, Vol. 2. Balkema, Rotterdam, p 927

    Google Scholar 

  26. Lerf A, Wagner FE, Poyato J (2001) Solid State Ionics 141–142:479

    Article  Google Scholar 

  27. Wagner FE, Wagner U (2004) Hyperfine Interact 154:35

    Article  CAS  Google Scholar 

  28. De Grave E, van Alboom A (1991) Phys Chem Miner 18:337

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Lerf.

Additional information

Dedicated to Prof. Dr. Robert Schöllhorn at the occasion of his 75th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lerf, A., Wagner, F.E., Poyato, J. et al. Intercalation and dynamics of hydrated Fe2+ in the vermiculites from Santa Olalla and Ojén. J Solid State Electrochem 15, 223–229 (2011). https://doi.org/10.1007/s10008-010-1171-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1171-0

Keywords

Navigation