Skip to main content
Log in

Electrochemical deposition of gold on indium zirconate (InZrOx with In/Zr atomic ratio 1.0) for high temperature automobile exhaust gas sensors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Automobile exhaust gas emissions are causing serious damage to urban air quality in and around major cities of the world, which demands continuous monitoring of exhaust emissions. The chief components of automobile exhaust include carbon monoxide (CO), nitrogen oxides (NOx), and hydrocarbons. Indium zirconate (InZrOx) and gold/indium zirconate (Au/InZrOx) composite nanopowders are believed to be interesting materials to detect these substances. To this end, characterization and gas sensing properties of InZrOx and Au/InZrOx composite nanopowders are discussed. InZrOx nanoparticles with In/Zr atomic ratio of 1.00 (±0.05) are synthesized via pH-controlled co-precipitation of In and Zr salts in aqueous ammonia. Gold (Au) nanoparticles are subsequently deposited on InZrOx using an in situ sacrificial Au electrolysis procedure. The products are characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The gas sensing performance of Au/InZrOx composite nanopowder is studied by depositing a thick powder film on interdigitated electrode structures patterned on SiC substrate to facilitate high temperature operation. The resistivity of the Au/InZrOx layer is the sensor signal, and the sensors could be operated at 500–600 °C, which is a suitable temperature range for engine exhaust measurements. The control sensing measurements reveal that Au/InZrOx composite nanopowder exhibits higher response towards 2–20 % O2 gas as compared to pristine InZrOx nanoparticles. Further studies show that when applied to exhaust gases such as CO and nitric oxide (NO), the response of Au/InZrOx sensors is significantly higher towards NO in this temperature range. Thus, sensor performance characteristics of Au/InZrOx composite nanopowder are promising in terms of their applications in automobile exhaust emission control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kim I-D, Rothschild A, Tuller HL (2013) Advances and new directions in gas-sensing devices. Acta Mater 61:974–1000

    Article  CAS  Google Scholar 

  2. Riegel J, Neumann H, Wiedenmann H-M (2002) Exhaust gas sensors for automotive emission control. Solid State Ionics 152:783–800

    Article  Google Scholar 

  3. Moos R (2005) A brief overview on automotive exhaust gas sensors based on electroceramics. Int J Appl Ceram Technol 2:401–413

    Article  CAS  Google Scholar 

  4. Moos R (2010) Catalysts as sensors—a promising novel approach in automotive exhaust gas aftertreatment. Sensors 10:6773–6787

    Article  CAS  Google Scholar 

  5. Moos R (2011) New approaches for exhaust gas sensing. In: Fleischer M, Lehmann M (eds) Solid state gas sens. - Ind. Appl. Springer, Berlin, pp 173–188

    Google Scholar 

  6. Afzal A, Cioffi N, Sabbatini L, Torsi L (2012) NOx sensors based on semiconducting metal oxide nanostructures: progress and perspectives. Sensors Actuators B Chem 171–172:25–42

    Article  Google Scholar 

  7. Lutic D, Strand M, Lloyd-Spetz A, Buchholt K, Ieva E, Käll P-O, Sanati M (2007) Catalytic properties of oxide nanoparticles applied in gas sensors. Top Catal 45:105–109

    Article  CAS  Google Scholar 

  8. Barsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: how to? Sensors Actuators B Chem 121:18–35

    Article  CAS  Google Scholar 

  9. Du N, Zhang H, Chen BD, Ma XY, Liu ZH, Wu JB, Yang DR (2007) Porous indium oxide nanotubes: layer-by-layer assembly on carbon-nanotube templates and application for room-temperature NH3 gas sensors. Adv Mater 19:1641–1645

    Article  CAS  Google Scholar 

  10. Liu X, Zhang J, Wang L, Yang T, Guo X, Wu S, Wang S (2011) 3D hierarchically porous ZnO structures and their functionalization by Au nanoparticles for gas sensors. J Mater Chem 21:349–356

    Article  Google Scholar 

  11. Fleischer M, Lehmann M (2012) Solid State Gas Sensors—Industrial Application. Springer Berlin Heidelberg, Berlin

    Book  Google Scholar 

  12. Huotari J, Lappalainen J, Puustinen J, Lloyd Spetz A (2013) Gas sensing properties of pulsed laser deposited vanadium oxide thin films with various crystal structures. Sensors Actuators B Chem 187:386–394

    Article  CAS  Google Scholar 

  13. Sadek AZ, Choopun S, Wlodarski W, Ippolito SJ, Kalantar-Zadeh K (2007) Characterization of ZnO nanobelt-based gas sensor for H2, NO2, and hydrocarbon sensing. IEEE Sensors J 7:919–924

    Article  Google Scholar 

  14. Cho H-C, Takase S, Song J-H, Shimizu Y (2013) Sensing behavior of solid-state impedancemetric NOx sensor using solid electrolyte transducer and oxide receptor. Sensors Actuators B Chem 187:94–98

    Article  CAS  Google Scholar 

  15. Cui L, Han F, Dai W, Murray EP (2014) Influence of microstructure on the sensing behavior of NOx exhaust gas sensors. J Electrochem Soc 161:B34–B38

    Article  CAS  Google Scholar 

  16. Maskell WC, Brett DJL, Brandon NP (2014) Thick-film amperometric zirconia oxygen sensors: influence of cobalt oxide as a sintering aid. Meas Sci Technol 25:065104

    Article  Google Scholar 

  17. Sowti khiabani P, Marzbanrad E, Hassani H, Raissi B (2013) Fast response NO2 gas sensor based on In2O3 nanoparticles. J Am Ceram Soc 96:2493–2498

    Article  Google Scholar 

  18. Kim B-J, Song I-G, Kim J-S (2014) In2O3-based micro gas sensor for detecting NO x gases. Electron Mater Lett 10:509–513

    Article  CAS  Google Scholar 

  19. Yang W, Wan P, Zhou X, Hu J, Guan Y, Feng L (2014) Additive-free synthesis of In2O3 cubes embedded into graphene sheets and their enhanced NO2 sensing performance at room temperature. ACS Appl Mater Interfaces 6:21093–21100

    Article  CAS  Google Scholar 

  20. Ivanovskaya MI, Ovodok EA, Kotsikau DA (2012) Interaction of carbon monoxide with In2O3 and In2O3-Au nanocomposite. J Appl Spectrosc 78:842–847

    Article  CAS  Google Scholar 

  21. Karwacki CJ, Ganesh P, Kent PRC, Gordon WO, Peterson GW, Niu JJ, Gogotsi Y (2013) Structure–activity relationship of Au/ZrO2 catalyst on formation of hydroxyl groups and its influence on CO oxidation. J Mater Chem A 1:6051–6062

    Article  CAS  Google Scholar 

  22. Li X, Liu J, Guo H, Zhou X, Wang C, Sun P, Hu X, Lu G (2014) Au@In2O3 core–shell composites: a metal–semiconductor heterostructure for gas sensing applications. RSC Adv 5:545–551

    Article  Google Scholar 

  23. Afzal A, Di Franco C, Mesto E, Ditaranto N, Cioffi N, Scordari F, Scamarcio G, Torsi L (2015) Au/In2O3 and Au/ZrO2 composite nanoparticles via in situ sacrificial gold electrolysis. Mater Express 5:171–179

  24. Reetz MT, Helbig W (1994) Size-selective synthesis of nanostructured transition metal clusters. J Am Chem Soc 116:7401–7402

    Article  CAS  Google Scholar 

  25. Reetz MT, Quaiser SA (1995) A new method for the preparation of nanostructured metal clusters. Angew Chem Int Ed Engl 34:2240–2241

  26. Thermo Avantage (2012) Avantage data system. Thermo Fisher Scientific Inc

  27. Pilolli R, Ditaranto N, Franco C, Palmisano F, Cioffi N (2012) Thermally annealed gold nanoparticles for surface-assisted laser desorption ionisation—mass spectrometry of low molecular weight analytes. Anal Bioanal Chem 404:1703–1711

    Article  CAS  Google Scholar 

  28. Pearce R, Iakimov T, Andersson M, Hultman L, Spetz AL, Yakimova R (2011) Epitaxially grown graphene based gas sensors for ultra sensitive NO2 detection. Sensors Actuators B Chem 155:451–455

    Article  CAS  Google Scholar 

  29. Stefánsson A (2002) The stability and stoichiometry of gold(I) and silver(I) complexes in hydrothermal solutions. Swiss Federal Institute of Technology, Zurich

    Google Scholar 

  30. Huang Y, Li D, Li J (2004) β-Cyclodextrin controlled assembling nanostructures from gold nanoparticles to gold nanowires. Chem Phys Lett 389:14–18

    Article  CAS  Google Scholar 

  31. Monopoli A, Afzal A, di Franco C, Ditaranto N, Cioffi N, Nacci A, Cotugno P, Torsi L (2014) Design of novel indium oxide supported gold nanocatalysts and their application in homocoupling of arylboronic acids. J Mol Catal Chem 386:101–107

    Article  CAS  Google Scholar 

  32. Yang H, Wang S, Yang Y (2012) Zn-doped In2O3 nanostructures: preparation, structure and gas-sensing properties. CrystEngComm 14:1135–1142

    Article  CAS  Google Scholar 

  33. Rich R (2007) Inorganic reactions in water. Springer

  34. Lin AWC, Armstrong NR, Kuwana T (1977) X-ray photoelectron/Auger electron spectroscopic studies of tin and indium metal foils and oxides. Anal Chem 49:1228–1235

    Article  CAS  Google Scholar 

  35. Fabris S, Paxton AT, Finnis MW (2002) A stabilization mechanism of zirconia based on oxygen vacancies only. Acta Mater 50:5171–5178

    Article  CAS  Google Scholar 

  36. Agoston P, Albe K, Nieminen RM, Puska MJ (2009) Intrinsic n-type behavior in transparent conducting oxides: a comparative hybrid-functional study of In2O3, SnO2, and ZnO. Phys Rev Lett 103:245501

    Article  Google Scholar 

  37. Mahmood Q, Afzal A, Siddiqi HM, Habib A (2013) Sol–gel synthesis of tetragonal ZrO2 nanoparticles stabilized by crystallite size and oxygen vacancies. J Sol-Gel Sci Technol 67:670–674

    Article  CAS  Google Scholar 

  38. Borisenko VE, Gaponenko SV, Gurin VS (2011) Physics, chemistry and applications of nanostructures: proceedings of the international conference nanomeeting—2011: reviews and short notes: Minsk, Belarus, 26-29 May 2009. World Scientific

  39. Ye J, Liu C, Mei D, Ge Q (2013) Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110): a DFT study. ACS Catal 3:1296–1306

    Article  CAS  Google Scholar 

  40. Gan J, Lu X, Wu J, Xie S, Zhai T, Yu M, Zhang Z, Mao Y, Wang SCI, Shen Y, Tong Y (2013) Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes. Sci Rep 3:Art. No. 1021

  41. Cioffi N, Colaianni L, Ieva E, Pilolli R, Ditaranto N, Angione MD, Cotrone S, Buchholt K, Spetz AL, Sabbatini L, Torsi L (2011) Electrosynthesis and characterization of gold nanoparticles for electronic capacitance sensing of pollutants. Electrochim Acta 56:3713–3720

    Article  CAS  Google Scholar 

  42. Baltrus JP, Ohodnicki PR, Joy NA, Carpenter MA (2014) Examination of charge transfer in Au/YSZ for high-temperature optical gas sensing. Appl Surf Sci 313:19–25

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This manuscript is designed for the special issue devoted to the anniversary of Professor M. A. Vorotyntsev. Authors join the Editors in celebrating this important occasion and the outstanding achievements of Professor Vorotyntsev.

Authors gratefully acknowledge the Apulian Technological District on Mechatronics (MEDIS) and the Italian Ministero dell’Istruzione, dell’Universita e della Ricerca (MIUR), PON program 2007–2013 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adeel Afzal or Nicola Cioffi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzal, A., Andersson, M., Di Franco, C. et al. Electrochemical deposition of gold on indium zirconate (InZrOx with In/Zr atomic ratio 1.0) for high temperature automobile exhaust gas sensors. J Solid State Electrochem 19, 2859–2868 (2015). https://doi.org/10.1007/s10008-015-2900-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2900-1

Keywords

Navigation