Skip to main content
Log in

Synthesis, characterization, and electrochemical application of phosphorus-doped multi-walled carbon nanotubes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Phosphorus-doped multi-walled carbon nanotubes (P-MWCNTs) were grown onto oxidized silicon substrate with decomposition of cyclohexane (CyH) and triphenylphosphine (TPP) in the presence of ferrocene (FeCp2) by means of chemical vapor deposition technique. For the fabrication, the mass percent of TPP in CyH/TPP/FeCp2 ternary mixture was varied from 0.5 % to 2.0 % wt., while the mass percent of FeCp2 was fixed to either 2.0 % or 5.0 % wt. The P-MWCNTs were characterized using scanning and transmission electron microscopy in combination with energy-dispersive X-ray spectroscopy as well as using Raman spectroscopy. The electrochemical response of P-MWCNTs towards ferrocyanide/ferricyanide [Fe(CN)6]3-/4- was studied by means of cyclic voltammetry and electrochemical impedance spectroscopy. Application of P-MWCNTs for electrochemical analysis of ascorbic acid (AA), dopamine (DA), and uric acid (UA) was successfully carried out, and limits of detection of 1.12 μM, 0.19 μM, and 0.80 μM were estimated, respectively. The findings demonstrate that P-MWCNTs are a quite promising material for applications in electrochemical sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bernholc J, Brenner D, Buongiorno Nardelli M, Meunier V, Roland C (2002) Mechanical and electrical properties of nanotubes. Annu Rev Mater Res 32:347–375

    Article  CAS  Google Scholar 

  2. Luo H, Shi Z, Li N, Gu Z, Zhang Q (2001) Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal Chem 73:915–920

    Article  CAS  Google Scholar 

  3. Musamech M, Wang J, Merkoci A, Lin YH (2002) Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem Commun 4:743–746

    Article  Google Scholar 

  4. Yu J, Zhao J, Hu C, Hu S (2007) Enhanced oxidation of estrone at multi-wall carbon nanotubes film electrode: direct evidence for the advantage of carbon nanotubes over other carbonaceous materials. J Nanosci Nanotechnol 7:1631–1638

    Article  CAS  Google Scholar 

  5. Xie X, Gan T, Sun D, Wu K (2008) Application of multi-walled carbon nanotubes/nafion composite film in electrochemical determination of Pb2+. Fuller Nanotub Carbon Nanostruct 16:103–113

    Article  CAS  Google Scholar 

  6. Brahman PK, Dar RA, Tiwari S, Pitre KS (2012) Electrochemical behavior of gatifloxacin at multi-walled carbon nanotube paste electrode and its interaction with DNA. Rev Anal Chem 31:83–92

    Article  CAS  Google Scholar 

  7. Debnarayan J, Chia-Liang S, Li-Chyong C, Kuei-Hsien C (2013) Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes. Prog Mater Sci 58:565–635

    Article  Google Scholar 

  8. Liu H, Zhang Y, Li R, Sun X, Abou-Rachid H (2012) Thermal and chemical durability of nitrogen-doped carbon nanotubes. J Nanoparticle Res 14:1016 (8 Pages)

    Article  Google Scholar 

  9. Maciel IO, Campos-Delgado J, Cruz-Silva E, Pimenta MA, Sumpter BG, Meunier V, Lopez-Urias F, Munoz-Sandoval E, Terrones H, Terrones M, Jorio A (2009) Synthesis, electronic structure, and Raman scattering of phosphorus-doped single-wall carbon nanotubes. Nano Lett 9:2267–2272

    Article  CAS  Google Scholar 

  10. Cruz-Silva E, Cullen DA, Gu L, Romo-Herrera JM, Munoz-Sandoval E, Lopez-Urias F, Sumpter BG, Meunier V, Charlier JC, Smith DJ, Terrones H, Terrones M (2008) Heterodoped nanotubes: theory, synthesis, and characterization of phosphorus-nitrogen doped multiwalled carbon nanotubes. ACS Nano 2:441–448

    Article  CAS  Google Scholar 

  11. Cruz-Silva E, Lopez-Urias F, Munoz-Sandoval E, Sumpter BG, Terrones H, Charlier JC, Meunier V, Terrones M (2009) Electronic transport and mechanical properties of phosphorus- and phosphorus-nitrogen-doped carbon nanotubes. ACS Nano 3:1913–1921

    Article  CAS  Google Scholar 

  12. Tsierkezos NG, Ritter R (2010) Synthesis and electrochemistry of multiwalled carbon nanotube films directly attached on silica substrate. J Solid State Electrochem 14:1101–1107

    Article  CAS  Google Scholar 

  13. Tsierkezos NG, Ritter R (2012) Oxidation of dopamine on multi-walled carbon nanotubes. J Solid State Electrochem 16:2217–2226

    Article  CAS  Google Scholar 

  14. Tsierkezos NG, Wetzold N, Ritter U (2013) Electrochemical responses of carbon nanotubes-based films printed on polymer substances. Ionics 19:335–341

    Article  CAS  Google Scholar 

  15. Tsierkezos NG, Wetzold N, Ritter U, Hübler AC (2013) Analysis of dopamine on printed polymer thin film consisting of multi-walled carbon nanotubes. Monatsh Chem 144:581–588

    Article  CAS  Google Scholar 

  16. Tsierkezos NG, Wetzold N, Ritter U, Hübler AC (2013) Preparation and electrochemical performance of novel printed film consisting of multi-walled carbon nanotubes. J Nanosci Lett 3:6 (6 pages)

    Article  Google Scholar 

  17. Tsierkezos NG, Wetzold N, Hübler AC, Ritter U, Szroeder P (2013) Multi-walled carbon nanotubes printed onto polycarbonate substrate for electrochemical sensing. Sens Lett 11:1465–1471

    Article  CAS  Google Scholar 

  18. Tsierkezos NG, Ritter U (2011) Application of electrochemical impedance spectroscopy for characterisation of the reduction of benzophenone in acetonitrile solutions. Phys Chem Liq 49:729–742

    Article  CAS  Google Scholar 

  19. Jourdain V, Stéphan O, Castignolles M, Loiseau A, Bernier P (2004) Controlling the morphology of multiwalled carbon nanotubes by sequential catalytic growth induced by phosphorus. Adv Mater 16:447–453

    Article  CAS  Google Scholar 

  20. Larrude DG, Maia da Costa MEH, Monteiro FH, Pinto AL, Freire FL Jr (2012) Characterization of phosphorus-doped multiwalled carbon nanotubes. J Appl Phys 111:064315 (6 pages)

    Article  Google Scholar 

  21. Wang H, Wang H, Chen Y, Liu Y, Zhao J, Cai Q, Wang X (2013) Phosphorus-doped graphene and (8, 0) carbon nanotube: structural, electronic, magnetic properties, and chemical reactivity. Appl Surf Sci 273:302–309

    Article  CAS  Google Scholar 

  22. Ritter U, Scharff P, Siegmund C, Dmytrenko OP, Kulish NP, Prylutskyy YI, Belyi NM, Gubanov VA, Komarova LI, Lizunova SV, Poroshin VG, Shlapatskaya VV, Bernas H (2006) Radiation damage to multi-walled carbon nanotubes and their Raman vibrational modes. Carbon 44:2694–2700

    Article  CAS  Google Scholar 

  23. Ritter U, Scharff P, Dmytrenko OP, Kulish NP, Prylutskyy YI, Belyi NM, Gubanov VA, Komarova LA, Lizunova SV, Shlapatskaya VV, Bernas H (2007) Radiation damage and Raman vibrational modes of single-walled carbon nanotubes. Chem Phys Lett 447:252–256

    Article  CAS  Google Scholar 

  24. Tuinstra F, Koenig J (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130

    Article  CAS  Google Scholar 

  25. Ferrari A, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107

    Article  CAS  Google Scholar 

  26. Szroeder P, Górska A, Tsierkezos N, Ritter U, Strupiński W (2013) The role of band structure in electron transfer kinetics in low-dimensional carbon. Materialwiss Werkst 44:226–230

    Article  CAS  Google Scholar 

  27. Benissad-Aissani F, Aı̈t-Amar H, Schouler MC, Gadelle P (2004) The role of phosphorus in the growth of vapour-grown carbon fibres obtained by catalytic decomposition of hydrocarbons. Carbon 42:2163–2168

    Article  CAS  Google Scholar 

  28. Wen YH, Zhang HM, Qian P, Zhou HT, Zhao P, Yi BL, Yang YS (2006) A study of the Fe(III)/Fe(II)-triethanolamine complex redox couple for redox flow battery application. Electrochim Acta 51:3769–3776

    Article  CAS  Google Scholar 

  29. Solak AO, Eichorst LR, Clark WJ, McCreery RL (2003) Modified carbon surfaces as ‘organic electrodes’ that exhibit conductance switching. Anal Chem 75:296–305

    Article  CAS  Google Scholar 

  30. Nicholson RS, Shain I (1964) Theory of stationary electrode polarography: single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal Chem 36:706–723

    Article  CAS  Google Scholar 

  31. Tsierkezos NG, Ritter U (2012) Influence of concentration of supporting electrolyte on electrochemistry of redox systems on multi-walled carbon nanotubes. Phys Chem Liq 50:661–668

    Article  CAS  Google Scholar 

  32. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764

    Article  CAS  Google Scholar 

  33. Tang Y, Allen BL, Kauffman DR, Star A (2009) Electrocatalytic activity of nitrogen-doped carbon nanotube cups. J Am Chem Soc 131:13200–13201

    Article  CAS  Google Scholar 

  34. Min YS, Bae EJ, Kim UJ, Lee EH, Park N, Hwang CS, Park W (2008) Unusual transport characteristics of nitrogen-doped single-walled carbon nanotubes. Appl Phys Lett 93:043113 (3 pages)

    Article  Google Scholar 

  35. Li X, Rong J, Wei B (2010) Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress. ACS Nano 4:6039–6049

    Article  CAS  Google Scholar 

  36. Prodromidis MI (2010) Impedimetric immunosensors—a review. Electrochim Acta 55:4227–4233

    Article  CAS  Google Scholar 

  37. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy: theory, experiment, and applications: John (Wiley and Sons)

  38. Peng H, Ma G, Mu J, Sun K, Lei Z (2014) Low-cost and high energy density asymmetric supercapacitors based on polyaniline nanotubes and MoO3 nanobelts. J Mater Chem A 2:10384–10388

    Article  CAS  Google Scholar 

  39. Chirea M (2013) Electron transfer at gold nanostar assemblies: a study of shape stability and surface density influence. Catalysts 3:288–309

    Article  CAS  Google Scholar 

  40. Tsierkezos NG, Ritter U (2012) Simultaneous detection of ascorbic acid and uric acid at MWCNT modified electrodes. J Nanosci Lett 2:25 (14 pages)

    Google Scholar 

  41. Goran JM, Favela CA, Stevenson KJ (2013) Electrochemical oxidation of dihydronicotinamide adenine dinucleotide at nitrogen-doped carbon nanotube electrodes. Anal Chem 85:9135–9141

    Article  CAS  Google Scholar 

  42. Kumar S, Vicente-Beckett V (2012) Glassy carbon electrodes modified with multiwalled carbon nanotubes for the determination of ascorbic acid by square-wave voltammetry. Beilstein J Nanotechnol 3:388–396

    Article  Google Scholar 

  43. Kamyabi MA, Narimani O, Monfared HH (2011) Electroless deposition of bis(4’-(4-pyridyl)-2,2’:6’,2”-terpyridine)iron(II) thiocyanate complex onto carbon nanotubes modified glassy carbon electrode: application to simultaneous determination of ascorbic acid, dopamine and uric acid. J Braz Chem Soc 22:468–477

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mrs. Doreen Schneider and Mrs. Sabine Heusing (Ilmenau University of Technology). We gratefully acknowledge financial support provided by Ministry Research and Technology of Republic of Indonesia (Project: Riset-Pro). The SEM/EDX and TEM/EDX analysis was carried out at Advanced Microscopy Laboratory (Trinity College Dublin, Ireland) with the financial support of European Commission (QualityNano; Grant Agreement No: FP7-262163; Application TCD-TAF-314). The authors would like to thank also Mr. Colm McAtamney (CRANN, Trinity College Dublin, Ireland) for his supportive contributions to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos G. Tsierkezos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 527 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsierkezos, N.G., Ritter, U., Thaha, Y.N. et al. Synthesis, characterization, and electrochemical application of phosphorus-doped multi-walled carbon nanotubes. J Solid State Electrochem 19, 891–905 (2015). https://doi.org/10.1007/s10008-014-2696-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2696-4

Keywords

Navigation