Skip to main content

Advertisement

Log in

Facile fabrication of mesoporous manganese oxides as advanced electrode materials for supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Mesoporous manganese oxides (MnO2) were synthesized via a facile chemical deposition strategy. Three kinds of basic precipitants including sodium carbonate (Na2CO3), sodium bicarbonate (NaHCO3), and sodium hydroxide (NaOH) were employed to adjust the microstructures and surface morphologies of MnO2 materials. The obtained MnO2 materials display different microstructures. Great differences are observed in their specific surface area and porosity properties. The microstructures and surface morphologies characteristics of MnO2 materials largely determine their pseudocapacitive behavior for supercapacitors. The MnO2 prepared with Na2CO3 precipitant exhibits the optimal microstructures and surface morphologies compared with the other two samples, contributing to their best electrochemical performances for supercapacitors when conducted either in the single electrode tests or in the capacitor measurements. The optimal MnO2 electrode exhibits a high specific capacitance (173 F g–1 at 0.25 A g−1), high-rate capability (123 F g−1 at 4 A g−1), and excellent cyclic stability (no capacitance loss after 5,000 cycles at 1 A g−1). The optimal activated carbon//MnO2 hybrid capacitor exhibits a wide working voltage (1.8 V), high-power and high-energy densities (1,734 W kg−1 and 20.9 Wh kg−1), and excellent cycling behavior (93.8 % capacitance retention after 10,000 cycles at 1 A g−1), indicating the promising applications of the easily fabricated mesoporous MnO2 for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aricò AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nat Mater 4:366–377

    Article  Google Scholar 

  2. Liu C, Li F, Ma LP, Cheng HM (2010) Adv Mater 22:E28–E62

    Article  CAS  Google Scholar 

  3. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  4. Pandolfo AG, Hollenkenkamp AF (2006) J Power Sources 157:1l–27

    Article  Google Scholar 

  5. Devaraj S, Munichandraiah N (2005) Electrochem Solid State Lett 8:A373–A377

    Article  CAS  Google Scholar 

  6. Pang SC, Anderson MA, Chapman TW (2000) J Electrochem Soc 147:444–450

    Article  CAS  Google Scholar 

  7. Toupin M, Brousse T, Be′langer D (2004) Chem Mater 16:3184–3190

    Article  CAS  Google Scholar 

  8. Chang JK, Lee MT, Tsai WT (2007) J Power Sources 166:590–594

    Article  CAS  Google Scholar 

  9. Toupin M, Brousse T, Be′langer D (2002) Chem Mater 14:3946–3952

    Article  CAS  Google Scholar 

  10. Babakhani B, Ivey DG (2010) J Power Sources 195:2110–2117

    Article  CAS  Google Scholar 

  11. Hu CC, Chang KH, Lin MC, Wu YT (2006) Nano Lett 6:2690–2695

    Article  CAS  Google Scholar 

  12. Chun SE, Pyun SI, Lee GJ (2006) Electrochim Acta 51:6479–6486

    Article  CAS  Google Scholar 

  13. Li L, Qin ZY, Wang LF, Liu HJ, Zhu MF (2010) J Nanopart Res 12:2349–2353

    Article  CAS  Google Scholar 

  14. Chang JK, Chen YL, Tsai WT (2004) J Power Sources 135:344–353

    Article  CAS  Google Scholar 

  15. Subramanian V, Zhu H, Wei B (2008) Chem Phys Lett 453:242–249

    Article  CAS  Google Scholar 

  16. Lee H, Goodenough J (1999) J Solid State Chem 144:220–223

    Article  CAS  Google Scholar 

  17. McKeown DA, Hagans PL, Carette LPL, Russell AE, Swider KE, Rolison DR (1999) J Phys Chem B 103:4825–4832

    Article  CAS  Google Scholar 

  18. Kim H, Popov BN (2003) J Electrochem Soc 150:D56–D62

    Article  CAS  Google Scholar 

  19. Lee MT, Chang JK, Tsai WT (2007) J Electrochem Soc 154:A875–A881

    Article  CAS  Google Scholar 

  20. Inoue R, Nakashima Y, Tomono K, Nakayama M (2012) J Electrochem Soc 159:A445–A451

    Article  CAS  Google Scholar 

  21. Amatucci GG, Badway F, Singhal A, Beaudoin B, Skandan G, Bowmer T, Plitz I, Pereira N, Chapman T, Jaworski R (2001) J Electrochem Soc 148:A940–A950

    Article  CAS  Google Scholar 

  22. Donne SW, Hollenkamp AF, Jones BC (2010) J Power Sources 195:367–373

    Article  CAS  Google Scholar 

  23. Devaraj S, Munichandraiah N (2008) J Phys Chem C 112:4406–4417

    Article  CAS  Google Scholar 

  24. Beaudrouet E, Gal AL, Salle L, Guyomard D (2009) Electrochim Acta 54:1240–1248

    Article  CAS  Google Scholar 

  25. Ma YR, Qi LM, Ma JM, Cheng HM, Shen W (2003) Langmuir 19:9079–9085

    Article  CAS  Google Scholar 

  26. Liu XM, Fu SY, Xiao HM, Huang CJ (2005) J Solid State Chem 178:2798–27103

    Article  CAS  Google Scholar 

  27. Jiang RR, Huang T, Liu JL, Zhuang JH, Yu AS (2009) Electrochim Acta 54:3047–3052

    Article  CAS  Google Scholar 

  28. Nayak PK, Munichandraiah N (2011) Microporous Mesoporous Mater 143:206–214

    Article  CAS  Google Scholar 

  29. Nayak PK, Munichandraiah N (2012) J Solid State Electrochem 16:2739–2749

    Article  CAS  Google Scholar 

  30. Wang YT, Lu AH, Zhang HL, Li WC (2011) J Phys Chem C 115:5413–5421

    Article  CAS  Google Scholar 

  31. Zhou H, Li D, Hibino M, Honma I (2005) Angew Chem Int Ed 44:797–802

    Article  CAS  Google Scholar 

  32. Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S (2006) Nat Mater 5:987–994

    Article  CAS  Google Scholar 

  33. Ma RH, Bando Y, Zhang LQ, Sasaki T (2004) Adv Mater 16:918–922

    Article  CAS  Google Scholar 

  34. Kuo SL, Wu NL (2006) J Electrochem Soc 153:A1317–A1324

    Article  CAS  Google Scholar 

  35. Ragupathy P, Vasan HN, Munichandraiah N (2008) J Electrochem Soc 155:A34–A40

    Article  CAS  Google Scholar 

  36. Fabio AD, Giorgi A, Mastragostino M, Soavi F (2001) J Electrochem Soc 148:A845–A850

    Article  Google Scholar 

  37. Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M (2001) J Power Sources 101:109–116

    Article  CAS  Google Scholar 

  38. Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS (2008) Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  39. Wu MS, Huang CY, Lin KH (2009) J Power Sources 186:557–564

    Article  CAS  Google Scholar 

  40. Adekunle AS, Ozoemena KI (2011) Electroanalysis 23:971–979

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of this research by the National Basic Research Program of China (2012CB932800) and Scientific Research Foundation for the Returned Overseas Chinese Scholars and State Education Ministry (SRF for ROCS, SEM).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ningyu Gu or Rui Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Gu, N., Ding, R. et al. Facile fabrication of mesoporous manganese oxides as advanced electrode materials for supercapacitors. J Solid State Electrochem 17, 2579–2588 (2013). https://doi.org/10.1007/s10008-013-2142-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2142-z

Keywords

Navigation