Skip to main content
Log in

Sulfonated poly(ether ether ketone)/manganese dioxide composite for the removal of low level radionuclide ions from aqueous solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Various composite adsorbents based on sulfonated poly(ether ether ketone)/manganese dioxide were prepared for the removal of stable and radioactive ions from contaminated aqueous solution. Batch adsorption experiments revealed superior adsorption capacities of the composite using very low initial concentration of studied elements. Starting with 1000 µg L−1 contaminated solution, the maximum equilibrium metal uptake capacity reached 2.0 mg g−1 for Pb2+, 1.9 mg g−1 for Cd2+, Cu2+ and Zn2+, and 3.7 mg g−1 for Co2+. In addition, the distribution coefficient reached 11,600 mL g−1 for 137Cs and 70,000 mL g−1 for 210Pb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kubota M (1989) High level radioactive waste and spent fuel management. The American Society of Mechanical Engineers, New York, p p537

    Google Scholar 

  2. International Atomic Energy Agency (1984) Treatment of low- and intermediate-level liquid radioactive wastes. In: Technical reports series no. 236. IAEA, Vienna

  3. Navratil JD (1985) Ion exchange technology in spent fuel reprocessing, RFP-ABST-3639. Rockwell International Corporation, Golden, CO

    Google Scholar 

  4. Al Abdullah J, Michèl H, Funel GB, Féraud G (2014) Distribution and baseline values of trace elements in the sediment of Var River catchment, southeast France. Environ Monit Assess 186(12):8175–8189

    Article  CAS  PubMed  Google Scholar 

  5. Gupta VK, Nayak A, Agarwal S (2015) Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environ Eng Res 20(1):1–18

    Article  Google Scholar 

  6. Ding D, Lei Z, Yang Y, Feng C, Zhang Z (2014) Selective removal of cesium from aqueous solutions with nickel (II) hexacyanoferrate (III) functionalized agricultural residue–walnut shell. J Hazard Mater 270:187–195

    Article  CAS  PubMed  Google Scholar 

  7. Al Lafi AG, Abdullah JA, Alnama T, Amin Y (2017) Removal of lead from aqueous solutions by polyethylene waste/nano-manganese dioxide composite. J Polym Environ 25(2):391–401

    Article  CAS  Google Scholar 

  8. Al Abdullah JA, Al Lafi AG, Amin Y, Alnama T (2018) A Styrofoam-nano manganese oxide based composite: preparation and application for the treatment of wastewater. Appl Radiat Isot 136:73–81

    Article  CAS  PubMed  Google Scholar 

  9. Al Lafi AG, Abdullah JA, Hasan R, Amin Y, Alnama T (2018) Synthesis of cross-linked sulfonated poly(ether ether ketone) and its use for Pb2+ and 137Cs removal from aqueous solution. J Radioanal Nucl Chem 318(2):39–49

    Google Scholar 

  10. Duignan MR, Nash CA (2010) Removal of cesium from savannah river site waste with spherical resorcinol formaldehyde ion exchange resin: experim tests. Separ Sci Technol 45(12–13):1828–1840

    Article  CAS  Google Scholar 

  11. Ivanets AI, Shashkova IL, Kitikova NV, Drozdova NV (2014) Extraction of Co(II) ions from aqueous solutions with thermally activated dolomite. Rus J Appl Chem 87(3):270–275

    Article  CAS  Google Scholar 

  12. Al Abdullah JA, Al Lafi AG, Al-Masri W, Amin Y, Alnama T (2016) Adsorption of cesium, cobalt, and lead onto a synthetic nano manganese oxide: behavior and mechanism. Water Air Soil Pollut 227:241

    Article  CAS  Google Scholar 

  13. Celestian AJ, Kubicki JD, Hanson J, Clearfield A, Parise JB (2008) The mechanism responsible for extraordinary Cs ion selectivity in crystalline silicotitanate. J Am Chem Soc 130(35):11689–11694

    Article  CAS  PubMed  Google Scholar 

  14. Aguila B, Banerjee D, Nie Z, Shin Y, Ma S, Thallapally PK (2016) Selective removal of cesium and strontium using porous frameworks from high level nuclear waste. Chem Commun 52:5940–5942

    Article  CAS  Google Scholar 

  15. Kitagawa S, Kitaura R, Si Noro (2004) Functional porous coordination polymers. Angew Chem Int Ed 43(18):2334–2375

    Article  CAS  Google Scholar 

  16. Feng X, Ding X, Jiang D (2012) Covalent organic frameworks. Chem Soc Rev 41(18):6010–6022

    Article  CAS  PubMed  Google Scholar 

  17. Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211–212:317–331

    Article  CAS  PubMed  Google Scholar 

  18. Dyer A, Pillinger M, Newton J, Harjula R, Möller T, Amin S (2000) Sorption behavior of radionuclides on crystalline synthetic tunnel manganese oxides. Chem Mater 12(12):3798–3804

    Article  CAS  Google Scholar 

  19. Al Lafi AG, Hay JN, Parker DJ (2015) The crosslinking of poly (ether ether ketone): thermally and by irradiation. J Appl Polym Sci 132(22):41999

    Article  CAS  Google Scholar 

  20. Al Lafi AG (2015) The sulfonation of poly(ether ether ketone)as investigated by two-dimensional FTIR correlation spectroscopy. J Appl Polym Sci 132(2), Article no. 41242

  21. Su Q, Pan B, Pan B, Zhang Q, Zhang W, Lv L, Wang X, Wu J, Zhang Q (2009) Fabrication of polymer-supported nanosized hydrous manganese dioxide (HMO) for enhanced lead removal from waters. Sci Tot Environ 407:5471–5477

    Article  CAS  Google Scholar 

  22. Khandekar RN, Tripathi RM, Raghunath R, Mishra UC (1988) Simultaneous determination of Pb, Cd, Zn and Cu in surface soil using differential pulse anodic stripping voltammetry. Ind J Environ Health 30(2):98–103

    CAS  Google Scholar 

  23. IAEA (2004) Quantifying uncertainty in nuclear analytical measurements (No. TECDOC-1401). IAEA, Vienna

  24. Cheney MA, Bhowmik PK, Qian S, Joo SW, Hou W, Okoh JM (2008) A new method of synthesizing black birnessite nanoparticles: from brown to black birnessite with nanostructures. J Nanomater 2008, Article ID 763706

  25. Kyzas GZ, Matis KA (2015) Nanoadsorbents for pollutants removal: a review. J Molecul Liquids 203:159–168

    Article  CAS  Google Scholar 

  26. Wang N, Jin R-N, Omer AM, Ouyang X-k (2017) Adsorption of Pb(II) from fish sauce using carboxylated cellulose nanocrystal:isotherm, kenetics, and thermodynamic studies. Int J Biol Macromol 102:232–240

    Article  CAS  PubMed  Google Scholar 

  27. Ivanets AI, Prozorovich VG, Kouznetsova TF, Radkevich AV, Zarubo AM (2016) Mesoporous manganese oxides prepared by sol-gel method: synthesis, characterization and sorption properties towards strontium ions. Environ Nanotechnol Monit Manag 6:261–269

    Google Scholar 

  28. Yen SPS, Narayanan SR, Halpert G, Graham E, Yavrouian A (1998) Polymer material for electrolytic membranes in fuel cells. US Patent 5,795,496

  29. Al Lafi AG, Al Abdullah J (2015) Cesium and cobalt adsorption on synthetic nano manganese oxide: a two dimensional infra-red correlation spectroscopic investigation. J Mol Struct 1093:13–23

    Article  CAS  Google Scholar 

  30. Julien CM, Massot M, Poinsignon C (2004) Lattice vibrations of manganese oxides. Spectrochim Acta Part A: Mol Biomol Spectrosc 60:689–700

    Article  CAS  Google Scholar 

  31. Kolta GA, Krim FMA, Azim AAA (1971) Infrared absorption spectra of some manganese dioxide modifications and their thermal products. Z anorg allg Chem 884:260–266

    Article  CAS  PubMed  Google Scholar 

  32. Cai PB, Li WS, Juan ZS, Wei GQ, Cheng XZ, Lu L, Ming ZW (2013) Recyclable polymer-based nano-hydrous manganese dioxide for highly efficient Tl(I) removal from water. Sci China Chem 56(1):1–9

    Google Scholar 

  33. Wang W, Xu C, Wang G, Liu Y, Zheng C (2002) Preparation of smooth single-crystal Mn3O4 nanowires. Adv Mater 14:837–840

    Article  CAS  Google Scholar 

  34. Alslaibi TM, Abustan I, Ahmad MA, Foul AA (2013) Application of response surface methodology (RSM) for optimization of Cu2+, Cd2+, Ni2+, Pb2+, Fe2+, and Zn2+ removal from aqueous solution using microwaved olive stone activated carbon. J Chem Technol Biotechnol 88:2141–2151

    Article  CAS  Google Scholar 

  35. Li Y-H, Ding J, Luan Z, Di Z, Zhu Y, Xu C, Wu D, Wei B (2003) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41:2787–2792

    Article  CAS  Google Scholar 

  36. Shen C, Chen C, Wen T, Zhao Z, Wang X, Xu A (2015) Superior adsorption capacity of g-C3N4 for heavy metal ions from aqueous solutions. J Colloid Inter Sci 456:7–14

    Article  CAS  PubMed  Google Scholar 

  37. Brown P, Jefcoat A, Parrish D, Gill S, Graham E (2000) Evaluation of the adsorptive capacity of peanut hull pellets for heavy metals in solution. Adv Environ Res 4:19–29

    Article  Google Scholar 

  38. Ma B, Oh S, Shin WS, Choi S-J (2011) Removal of Co2+, Sr2+ and Cs+ from aqueous solution by phosphate-modified montmorillonite (PMM). Desalination 276:336–346

    Article  CAS  Google Scholar 

  39. Zhu Y, Hu J, Wan J (2014) Removal of Co2+ from radioactive wastewater by polyvinyl alcohol (PVA)/chitosan magnetic composite. Prog Nuc Energy 71:172–178

    Article  CAS  Google Scholar 

  40. Pehlivan E, Altum T (2007) Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80. J Hazard Mater 140:299–307

    Article  CAS  PubMed  Google Scholar 

  41. Pehlivan E, Altun T (2006) The study of various parametres affecting the ion exchange of Cu2+, Zn2+, Ni2+, Cd2+ and Pb2+ from aqueous solution on Dowex 50W synthetic resin. J Hazard Mater B 134:149–156

    Article  CAS  Google Scholar 

  42. Demirbas A, Pehlivan E, Gode F, Altum T, Arslan G (2005) Adsorption of Cu(II), Zn(II), Ni(II), Pb(II), and Cd(II) from aqueous solution on Amberlite IR-120 synthetic resin. J Colloid Inter Sci 282:20–25

    Article  CAS  PubMed  Google Scholar 

  43. Borai EH, Harjula R, Malinen L, Paajanen A (2009) Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals. J Hazard Mater 172:416–422

    Article  CAS  PubMed  Google Scholar 

  44. Faver-Reguillon A, Dunjic B, Lemaire M, Chomel R (2001) Synthesis and evaluation of resorcinol-based ion exchange resins for the selective removal of cesium. Solv Extrac Ion Exchange 19:181–191

    Article  Google Scholar 

  45. Osmanlioglu AE (2006) Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey. J Hazard Mater 137:332–335

    Article  CAS  PubMed  Google Scholar 

  46. Awual MR, Miyazaki Y, Taguchi T, Shiwaku H, Yaita T (2016) Encapsulation of cesium from contaminated water with highly selective facial organic–inorganic mesoporous hybrid adsorbent. Chem Eng J 291:128–137

    Article  CAS  Google Scholar 

  47. Su Q, Pan B, Wan S, Zhang W, Lv L (2010) Use of hydrous manganese dioxide as a potential sorbent for selective removal of lead, cadmium, and zinc ions from water. J Colloid Inter Sci 349:607–612

    Article  CAS  Google Scholar 

  48. Al-Abdullah J, Al Lafi AG, Alnama T, Wa AM, Amin Y, Alkfri MN (2018) Adsorption Mechanism of Lead on Wood/Nano-Manganese Oxide Composite. Iranian J Chem Chem Eng (IJCCE) 37:131–144

    Google Scholar 

Download references

Acknowledgements

The authors thank Prof. I. Othman; the Director General of the Atomic Energy Commission of Syria, Prof. Z Ajji the Head of Chemistry Department, and Prof. M. S. Al Masri the Head of Protection and Safety Department for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul G. Al Lafi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Lafi, A.G., Al Abdullah, J., Amin, Y. et al. Sulfonated poly(ether ether ketone)/manganese dioxide composite for the removal of low level radionuclide ions from aqueous solution. J Radioanal Nucl Chem 321, 463–472 (2019). https://doi.org/10.1007/s10967-019-06630-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06630-6

Keywords

Navigation