Skip to main content
Log in

Ecological half-lives of radiocesium on Izu-Oshima Island related with the Fukushima Daiichi nuclear power plant accident

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Ecological half-lives of radiocesium were observed on Izu-Oshima Island, Japan, a place which experiences typhoons annually. The estimated ecological half-lives (uncertainty) based on the observations above an asphalt and a bare surface were 1.6 year (31.6%) and 1.9 year (14.4%), respectively; those of 134Cs and 137Cs in soil were 1.5 year (7.2%) and 4.0 year (5.9%), respectively. The radiation level was quickly returned to the original level compared to other locations that do not experience such typhoon activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. United Nations Scientific Committee on the Effects of Atomic Radiation (2017) Developments since the 2013 UNSCEAR Report on the levels and effects of radiation exposure due to the nuclear accident following the great east-Japan earthquake and tsunami, A 2017 White Paper to guide the Scientific Committee's future programme of work

  2. Science Council of Japan (2014) A review of the model comparison of transportation and deposition of radioactive materials released to the environment as a result of the Tokyo Electric Power Company’s Fukushima Daiichi Nuclear Power Plant accident

  3. Inoue K, Hosoda M, Sugino M, Shimizu H, Akimoto A, Hori K, Ishikawa T, Sahoo SK, Tokonami S, Narita H, Fukushi M (2012) Environmental radiation at Izu-Oshima after the Fukushima Daiichi nuclear power plant accident. Radiat Prot Dosim 152:234–237

    Article  CAS  Google Scholar 

  4. Inoue K, Arai M, Fujisawa M, Saito K, Fukushi M (2017) Detailed distribution map of absorbed dose rate in air in Tokatsu Area of Chiba Prefecture, Japan, constructed by car-borne survey 4 years after the Fukushima Daiichi Nuclear Power Plant accident. PLoS ONE 12:e0171100

    Article  Google Scholar 

  5. Meteorological Research Institue (2013) Artificial radionuclides in the environment. https://www.mri-jma.go.jp/Dep/ap/ap4lab/recent/ge_report/2013Artifi_Radio_report/2013Artifi_Radio_report.pdf. Accessed 13 Nov 2019 (In Japanese with English figures)

  6. Maedera F, Inoue K, Sugino M, Sano R, Furue M, Shimizu H, Tsuruoka H, Le VT, Fukushi M (2016) Natural variation of ambient dose rate in the air of Izu-Oshima Island after the Fukushima Daiichi Nuclear Power Plant accident. Radiat Prot Dosim 168:561–565

    Article  CAS  Google Scholar 

  7. Kitamura A, Kurikami H, Sakuma K, Malins A, Okumura M, Machida M, Mori K, Tada K, Tawara Y, Kobayashi T et al (2016) Redistribution and export of contaminated sediment within eastern Fukushima Prefecture due to typhoon flooding. Earth Surf Process Landf 41:1708–1726

    Article  Google Scholar 

  8. Malins A, Kurikami H, Nakama S, Saito T, Okumura M, Machida M, Kitamura A (2016) Evaluation of ambient dose equivalent rates influenced by vertical and horizontal distribution of radioactive cesium in soil in Fukushima Prefecture. J Environ Radioact 151:38–49

    Article  CAS  Google Scholar 

  9. Naito W, Uesaka M, Yamada C, Kurosawa T, Yasutaka T, Ishii H (2016) Relationship between individual external doses, ambient dose rates and individuals' activity-patterns in affected areas in Fukushima following the Fukushima Daiichi Nuclear Power Plant accident. PLoS ONE 11:e0158879

    Article  Google Scholar 

  10. Wessel P (1991) Free software helps map and display data. EOS Trans Am Geophys Union 72:441–448

    Article  Google Scholar 

  11. Geospatial Information Authority of Japan (2018) GSI Web Site. https://globalmaps.github.io/el.html. Accessed 12 Nov 2019

  12. Minato S (2001) Diagonal elements fitting technique to improve response matrixes for environmental gamma ray spectrum unfolding. Radioisotopes 50:463–471

    Article  CAS  Google Scholar 

  13. Hosoda M, Inoue K, Oka M, Omori Y, Iwaoka K, Tokonami S (2016) Environmental radiation monitoring and external dose estimation in Aomori Prefecture after the Fukushima Daiichi Nuclear Power Plant accident. Jpn J Health Phys 51:41–50

    Article  CAS  Google Scholar 

  14. Kinase S, Takahashi T, Sato S, Sakamoto R, Saito K (2014) Development of prediction models for radioactive caesium distribution within the 80-km radius of the Fukushima Daiichi nuclear power plant. Radiat Prot Dosim 160:318–321

    Article  CAS  Google Scholar 

  15. Tsubokura M, Murakami M, Nomura S, Morita T, Nishikawa Y, Leppold C, Kato S, Kami M (2017) Individual external doses below the lowest reference level of 1 mSv per year five years after the 2011 Fukushima nuclear accident among all children in Soma City, Fukushima: A retrospective observational study. PLoS ONE 12:e0172305

    Article  Google Scholar 

  16. Nuclear Emergency Response Headquarters (2011) On the framework of predicting future air dose rate based on monitoring data. https://www.kankyo.metro.tokyo.lg.jp/policy_others/radiation/about/hangenki.files/siryo1-120110824.pdf. Accessed 23 Jan 2020 (in Japanese)

  17. Joint Committee for Guides in Metrology (2008) Evaluation of measurement data - Guide to the expression of uncertainty in measurement, JCGM 100. https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf. Accessed 12 Nov 2019

  18. Hosoda M, Tokonami S, Sorimachi A, Monzen S, Osanai M, Yamada M, Kashiwakura I, Akiba S (2011) The time variation of dose rate artificially increased by the Fukushima nuclear crisis. Sci Rep 1:87

    Article  Google Scholar 

  19. Hosoda M, Tokonami S, Omori Y, Sahoo SK, Akiba S, Sorimachi S, Ishikawa T, Nair RR, Jayalekshmi PA, Sebastian P et al (2015) Estimation of external dose by car-borne survey in Kerala. India PLOS One 10:e0124433

    Article  Google Scholar 

  20. Inoue K, Hosoda M, Fukushi M, Furukawa M, Tokonami S (2015) Absorbed dose rate in air in metropolitan Tokyo before the Fukushima Daiichi Nuclear Power Plant accident. Radiat Prot Dosim 167:231–234

    Article  CAS  Google Scholar 

  21. Inoue K, Hosoda M, Shiroma Y, Furukawa M, Fukushi M, Iwaoka K, Tokonami S (2015) Changes of ambient gamma-ray dose rate in Katsushika Ward, metropolitan Tokyo before and after the Fukushima Daiichi Nuclear Power Plant accident. J Radioanal Nucl Chem 303:2159–2163

    CAS  Google Scholar 

  22. Inoue K, Tsuruoka H, Le VT, Arai M, Saito K, Fukushi M (2016) Impact on ambient dose rate in metropolitan Tokyo from the Fukushima Daiichi Nuclear Power Plant accident. J Environ Radioact 158–159:1–8

    Article  Google Scholar 

  23. Le TV, Inoue K, Tsuruoka H, Fujisawa M, Arai M, Nguyen LDH, Somboon S, Fukushi M (2018) Effective dose due to terrestrial gamma radiation estimated in Southern Vietnam by car-borne survey technique. Radiat Prot Dosim 179:1–8

    Article  Google Scholar 

  24. Kinoshita N, Sueki K, Sasa K, Kitagawa J, Ikarashi S, Nishimura T, Wong YS, Satou Y, Handa K, Takahashi T et al (2011) Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan. P Natl Acad Sci USA 108:19526–19529

    Article  CAS  Google Scholar 

  25. Torii T, Sanada Y, Sugita T, Kondo A, Shikaze Y, Takahashi M, Ishida M, Nishizawa Y, Urabe Y (2012) Investigation of Radionuclide Distribution Using Aircraft for Surrounding Environmental Survey from Fukushima Dai-ichi Nuclear Power Plant. JAEA-Technology 2012–036. https://jopss.jaea.go.jp/search/servlet/search?5037712&language=1. Accessed 12 Nov 2019

  26. Andersson KG, Roed J, Fogh CL (2002) Weathering of radiocaesium contamination on urban streets, walls and roofs. J Environ Radioact 62:49–60

    Article  CAS  Google Scholar 

  27. Mueck K, Steger F (1991) Wash-Off Effects in Urban Areas. Radiat Prot Dosim 37:189–194

    Article  CAS  Google Scholar 

  28. Roed J, Andersson KG, Barkovsky AN, Fogh CL, Mishine AS, Olsen SK, Ponomarjov AV, Prip H, Ramzaev VP, Vorobiev BF (1998) Mechanical decontamination tests in areas affected by the Chernobyl accident. Riso-R-1029. Riso National Laboratory, Roskilde, Denmark. ISBN 87–550–2361–4 https://inis.iaea.org/collection/NCLCollectionStore/_Public/30/004/30004765.pdf. Accessed 12 Nov 2019

  29. Kato H, Onda Y, Teramage M (2012) Depth distribution of 137Cs, 134Cs, and 131I in soil profile after Fukushima Dai-ichi Nuclear Power Plant Accident. J Environ Radioact 111:59–64

    Article  CAS  Google Scholar 

  30. Takahashi J, Onda Y, Hihara D, Tamura K (2018) Six-year monitoring of the vertical distribution of radiocesium in three forest soils after the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 192:172–180

    Article  CAS  Google Scholar 

  31. Ministry of Education, Culture, Sports, Science and Technology (2011) Results of nuclide analysis in soil. https://www.mext.go.jp/b_menu/shingi/chousa/gijyutu/017/shiryo/__icsFiles/afieldfile/2011/09/02/1310688_1.pdf. Accessed 13 Nov 2019

  32. Nishihara K, Iwamoto H, Suyama K (2012) Estimation of fuel compositions in Fukushima-Daiichi Nuclear Power Plant. JAEA-Data/Code 2012–018. https://jopss.jaea.go.jp/search/servlet/search?5036485&language=1. Accessed 13 Nov 2019 (In Japanese)

  33. International Atomic Energy Agency (2000) Generic procedures for assessment and response during a radiological emergency. IAEA-TECDOC-1162, Vienna. https://www-pub.iaea.org/MTCD/Publications/PDF/te_1162_prn.pdf. Accessed 13 Nov 2019

  34. Pietrzak-Flis Z, Krajewski P, Krajewska G, Sunderlandb NR (1994) Transfer of radiocesium from uncultivated soils to grass after the Chernobyl accident. Sci Total Environ 141:147–153

    Article  CAS  Google Scholar 

  35. Brouwer E, Baeyens B, Maes A, Cremers A (1983) Cesium and rubidium ion equilibria in illite clay. J Phys Chem 87:1213–1219

    Article  CAS  Google Scholar 

  36. Takeda A, Tsukada H, Nakao A, Takaku Y, Hisamatsu S (2013) Time-dependent changes of phytoavailability of Cs added to allophanic Andosols in laboratory cultivations and extraction tests. J Environ Radioact 122:29–36

    Article  CAS  Google Scholar 

  37. Japan Meteorological Agency (2019) Weather of the world. https://www.data.jma.go.jp/gmd/cpd/monitor/index.html. Accessed 13 Nov 2019

  38. Japan Meteorological Agency (2019) Past weather data. https://www.data.jma.go.jp/obd/stats/etrn/index.php. Accessed 13 Nov 2019

Download references

Acknowledgements

The authors thank Mr. Toshirou Nakabayashi for providing assistance with the car-borne survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazumasa Inoue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, K., Fukushi, M., Kurokawa, M. et al. Ecological half-lives of radiocesium on Izu-Oshima Island related with the Fukushima Daiichi nuclear power plant accident. J Radioanal Nucl Chem 324, 291–300 (2020). https://doi.org/10.1007/s10967-020-07040-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07040-9

Keywords

Navigation