Skip to main content
Log in

Synthesis of high molar activity 33P-labeled phosphorous acid

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Studies of phosphorus cycling in the ocean have been greatly facilitated by the use of high molar activity 32P- and 33P-labeled phosphate (phosphoric acid) in biological incubation assays. Recently, phosphite (phosphorous acid) has been shown to play an important role in the ocean. Here I report the microscale (100 μmol) synthesis of high molar activity 33P-labeled phosphorous acid. The scheme incorporates a new combination of known synthetic routes, which requires 20 times less radioactivity than existing methods. The economical production of 33P-phosphorous acid with molar activity > 37 GBq mol−1 for use in assays is readily achievable with this scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Karl DM (2014) Microbially mediated transformations of phosphorus in the sea: new views of an old cycle. Annu Rev Mar Sci 6:279–337

    Article  Google Scholar 

  2. Dyhrman ST, Ammerman JW, Van Mooy BAS (2007) Microbes and the marine phosphorus cycle. Oceanography 20:110–116

    Article  Google Scholar 

  3. Pasek MA, Sampson JM, Atlas Z (2014) Redox chemistry in the phosphorus biogeochemical cycle. Proc Natl Acad Sci USA 111:15468–15473

    Article  CAS  PubMed  Google Scholar 

  4. Polyviou D, Hitchcock A, Baylay AJ, Moore CM, Bibby TS (2015) Phosphite utilization by the globally important marine diazotroph Trichodesmium. Environ Microbiol Rep 7:824–830

    Article  CAS  PubMed  Google Scholar 

  5. Feingersch R, Philosof A, Mejuch T, Glaser F, Alalouf O, Shoham Y, Beja O (2012) Potential for phosphite and phosphonate utilization by Prochlorococcus. ISME J 6:827–834

    Article  CAS  PubMed  Google Scholar 

  6. Martínez A, Osburne MS, Sharma AK, DeLong EF, Chisholm SW (2012) Phosphite utilization by the marine picocyanobacterium Prochlorococcus MIT9301. Environ Microbiol 14:1363–1377

    Article  CAS  PubMed  Google Scholar 

  7. Van Mooy BAS, Krupke A, Dyhrman ST, Fredricks HF, Frischkorn KR, Ossolinski JE, Repeta DJ, Rouco-Molina M, Seewald JS, Sylva SP (2015) Major role of planktonic phosphate reduction in the marine phosphorus redox cycle. Science 348:783–785

    Article  CAS  PubMed  Google Scholar 

  8. Repeta DJ, Ferron S, Sosa OA, Johnson CG, Repeta LD, Acker M, DeLong EF, Karl DM (2016) Marine methane paradox explained by bacterial degradation of dissolved organic matter. Nat Geosci 9:884–887

    Article  CAS  Google Scholar 

  9. Björkman K, Karl DM (1994) Bioavailibility of inorganic and organic P compounds to natural assemblages of microorganisms in Hawaiian coastal waters. Mar Ecol Prog Ser 111:265–273

    Article  Google Scholar 

  10. Perry MJ, Eppley RW (1981) Phosphate uptake by phytoplankton in the central North Pacific. Deep Sea Res 28:39–49

    Article  CAS  Google Scholar 

  11. Van Mooy BAS, Fredricks HF, Pedler BE, Dyhrman ST, Karl DM, Lomas MW, Mincer T, Moore LR, Moutin T, Rappé MS, Webb EA (2009) Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458:69–72

    Article  CAS  PubMed  Google Scholar 

  12. Frischkorn KR, Krupke A, Rouco M, Salazar Estrada AE, Van Mooy BAS, Dyhrman ST (2018) Trichodesmium physiological ecology and phosphate reduction in the western Tropical South Pacific. Biogeosciences 15:5761–5788

    Article  Google Scholar 

  13. Zhang N, Casida JE (2001) Novel synthesis of [33P]-(2-chloroethyl)phosphonic acid. J Org Chem 66:327–329

    Article  CAS  PubMed  Google Scholar 

  14. Bisson C, Adams NBP, Stevenson B, Brindley AA, Polyviou D, Bibby TS, Baker PJ, Hunter CN, Hitchcock A (2017) The molecular basis of phosphite and hypophosphite recognition by ABC-transporters. Nat Commun 8:1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hassenteufel W, Jagitsch R, Koczy F (1963) Impregnation of glass surface against sorption of phosphate traces. Limnol Oceanogr 8:152–156

    Article  CAS  Google Scholar 

  16. Keenan RW, Martinez RA, Williams RF (1982) Synthesis of [32P]dolichyl phosphate, utilizing a general procedure for [32P]phosphorus oxychloride preparation. J Biol Chem 257:14817–14820

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I gratefully acknowledge Carl Johnson (Woods Hole Oceanographic Institution) for conducting the 31P NMR analyses. This work was supported by a grant from the Simons Foundation (329108 to B.A.S.V.M.), and is a contribution of SCOPE. This work was also supported by the National Science Foundation (OCE-1536346 to B.A.S.V.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin A. S. Van Mooy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Mooy, B.A.S. Synthesis of high molar activity 33P-labeled phosphorous acid. J Radioanal Nucl Chem 320, 885–888 (2019). https://doi.org/10.1007/s10967-019-06548-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06548-z

Keywords

Navigation