Skip to main content

Advertisement

Log in

Features of coastal upwelling regions that determine net air-sea CO2 flux

  • Original Articles
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

The influence of the coastal ocean on global net annual air-sea CO2 fluxes remains uncertain. However, it is well known that air-sea pCO2 disequilibria can be large (ocean pCO2 ranging from ∼400 µatm above atmospheric saturation to ∼250 µatm below) in eastern boundary currents, and it has been hypothesized that these regions may be an appreciable net carbon sink. In addition it has been shown that the high productivity in these regions (responsible for the exceptionally low surface pCO2) can cause nutrients and inorganic carbon to become more concentrated in the lower layer of the water column over the shelf relative to adjacent open ocean waters of the same density. This paper explores the potential role of the winter season in determining the net annual CO2 flux in temperate zone eastern boundary currents, using the results from a box model. The model is parameterized and forced to represent the northernmost part of the upwelling region on the North American Pacific coast. Model results are compared to the few summer data that exist in that region. The model is also used to determine the effect that upwelling and downwelling strength have on the net annual CO2 flux. Results show that downwelling may play an important role in limiting the amount of CO2 outgassing that occurs during winter. Finally data from three distinct regions on the Pacific coast are compared to highlight the importance of upwelling and downwelling strength in determining carbon fluxes in eastern boundary currents and to suggest that other features, such as shelf width, are likely to be important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, J. S. and P. A. Newberger (1996): Downwelling circulation on the Oregon continental shelf. Part I: Response to idealized forcing. J. Phys. Oceanogr., 26, 2011–2035.

    Article  Google Scholar 

  • Allen, S. E., C. Vindeirinho, R. E. Thomson, M. G. G. Foreman and D. L. Mackas (2001): Physical and biological processes over a submarine canyon during an upwelling event. Can. J. Fish. Aquat. Sci., 58, 671–684.

    Article  Google Scholar 

  • Auad, G., A. Miller and E. Di Lorenzo (2006): Long-term forecast of oceanic conditions off California and their biological implications. J. Geophys. Res., 111, C09008, doi:10.1029/2005JC003219.

    Article  Google Scholar 

  • Bienfang, P. K., P. J. Harrison and L. M. Quarmby (1982): Sinking rate response to depletion of nitrate, phosphate and silicate in four marine diatoms. Mar. Biol., 67, 295–302.

    Article  Google Scholar 

  • Bienfang, P. K., J. Szyper and E. Laws (1983): Sinking rate and pigment responses to light-limitation of a marine diatom: implications of dynamics of chlorophyll maximum layers. Oceanol. Acta, 6, 55–62.

    Google Scholar 

  • Borges, A. V., B. Delielle and M. Frankignoulle (2005): Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystems counts. Geophys. Res. Lett., 32, L14601, doi:10.1029/2005GL023053.

    Article  Google Scholar 

  • Cai, W.-J., Z. Wang and Y. Wang (2003): The role of marsh-dominated heterotrophic continental margins in transport of CO2 between the atmosphere, the land-sea interface and the ocean. Geophys. Res. Lett., 30, doi:10.1029/2003GL017633.

    Google Scholar 

  • Cai, W.-J., M. Dai and Y. Wang (2006): Air-sea exchange of carbon dioxide in ocean margins: a province-based synthesis. Geophys. Res. Lett., 33, L12603, doi:10.1029/2006GL026219.

    Article  Google Scholar 

  • Chase, Z., P. Strutton and B. Hales (2007): Iron links river runoff and shelf width to phytoplankton biomass along the U.S. west coast. Geophys. Res. Lett., 34, L04607, doi:10.1029/2006GL028069.

    Article  Google Scholar 

  • Crawford, W. R. and R. K. Dewey (1989): Turbulence and mixing: Sources of nutrients on the Vancouver Island continental shelf. Atmos.-Ocean, 27, 428–442.

    Article  Google Scholar 

  • Cullen, J. T., M. Chong and D. Ianson (2009): The British Columbian continental shelf as a source of dissolved iron to the subarctic northeast Pacific Ocean. Global Biogeochem. Cycles, doi:10.1029/2008GB003326 (in press).

  • Dorman, C. E. and C. D. Winant (1995): Buoy observations of the atmosphere along the west coast of the United States, 1981–1990. J. Geophys. Res., 100, 16029–16044.

    Article  Google Scholar 

  • Feely, R. A., C. L. Sabine, J. M. Hernandez-Ayon, D. Ianson and B. Hales (2008): Evidence for upwelling of corrosive ‘acidified’ water onto the continental shelf. Science, 320 1490–1492.

    Article  Google Scholar 

  • Friederich, G. E., P. M. Walz, M. G. Burczynski and F. P. Chavez (2002): Inorganic carbon in the central California upwelling system during the 1997–1999 El Niño - La Niña event. Prog. Oceanogr., 54, 185–203.

    Article  Google Scholar 

  • Griffin, D. A. and P. H. LeBlond (1990): Estuary/ocean exchange controlled by spring-neap tidal mixing. Estuar. Coast. Shelf Sci., 30, 275–297.

    Article  Google Scholar 

  • Hales, B., T. Takahashi and L. Bandstra (2005): Atmospheric CO2 uptake by a coastal upwelling system. Global Biogeochem. Cycles, 19, doi:10.1029/2004GB002295.

    Article  Google Scholar 

  • Hamme, R. C. and S. R. Emerson (2006): Constraining bubble dynamics and mixing with dissolved gases: Implications for productivity measurements by oxygen mass balance. J. Mar. Res., 64, 73–95.

    Article  Google Scholar 

  • Harrison, W. G., T. Platt and M. R. Lewis (1987): f-ratio and its relationship to ambient nitrate concentration in coastal waters. J. Plankton Res., 9, 235–248.

    Article  Google Scholar 

  • Hickey, B. M. (1998): Coastal oceanography of western North America from the tip of Baja California to Vancouver Island. p. 345–393. In The Sea, Vol. 11, ed. by A. R. Robinson and K. H. Brink, John Wiley & Sons, Inc.

  • Hickey, B. M. and N. S. Banas (2008): Why is the northern end of the California current system so productive? Oceanography, 21(4), 90–107.

    Article  Google Scholar 

  • Hickey, B., R. E. Thomson, H. Yih and P. H. LeBlond (1991): Velocity and temperature fluctuations in a buoyancy-driven current off Vancouver Island. J. Geophys. Res., 96, 10507–10538.

    Article  Google Scholar 

  • Hsieh, W. W., D. W. Ware and R. E. Thomson (1995): Windinduced upwelling along the west coast of North America, 1899–1988. Can. J. Fish. Aquat. Sci., 52, 325–334.

    Article  Google Scholar 

  • Hutchings, L., G. C. Pitcher, T. A. Probyn and G. W. Bailey (1995): The chemical and biological consequences of coastal upwelling. p. 65–81. In Upwelling in the Ocean: Modern Processes and Ancient Records, ed. by C. P. Summerhayes, K.-C. Emeis, M. V. Angel, R. L. Smith and B. Zeitzschel, Wiley and Sons Ltd.

  • Ianson, D. and S. E. Allen (2002): A two-dimensional nitrogen and carbon flux model in a coastal upwelling region. Global Biogeochem. Cycles, 16, 10.1029/2001GB001451.

  • Ianson, D., S. Harris, S. E. Allen, K. Orians, D. Varela and C. S. Wong (2003): The inorganic carbon system in the coastal upwelling region west of Vancouver Island, Canada. Deep-Sea Res. I, 50, 1023–1042.

    Article  Google Scholar 

  • Kaiser, J. M., M. K. Reuer, B. Barnett and M. L. Bender (2005): Marine productivity estimates from continuous O2/Ar ratio measurement by membrane inlet mass spectrometry. Geophys. Res. Lett., 32, L19605, doi:10.1029/2005GL023459.

    Google Scholar 

  • Klymak, J. M. and M. C. Gregg (2001): The three-dimensional nature of flow near a sill. J. Geophys. Res., 106, 22295–22311.

    Article  Google Scholar 

  • Lentz, S. J. (1992): The surface boundary layer in coastal upwelling regions. J. Phys. Oceanogr., 22, 1517–1539.

    Article  Google Scholar 

  • Lentz, S. J. and D. C. Chapman (2004): The importance of nonlinear cross-shelf momentum flux during wind-driven coastal upwelling. J. Phys. Oceanogr., 34, 2444–2457.

    Article  Google Scholar 

  • Masson, D. (2006): Seasonal water mass analysis for the Straits of Juan de Fuca and Georgia. Atmos.-Ocean, 44, 1–15.

    Article  Google Scholar 

  • Merryfield, W. J., B. Pal and M. G. G. Foreman (2009): Projected future changes in surface marine winds off the west coast of Canada. J. Geophys. Res., 114, C06008, doi:10.129/2008JC005123.

    Article  Google Scholar 

  • Nemcek, N., D. Ianson and P. D. Tortell (2008): A high-resolution survey of DMS, CO2, and O2/Ar distributions in productive coastal waters. Global Biogeochem. Cycles, 22, doi:10.1029/2006GB002879.

    Article  Google Scholar 

  • Pawlowicz, R. (2001): A tracer method for determining transport in two-layer systems, applied to the Strait of Georgia/Haro Strait/Juan de Fuca Strait estuarine system. Estuar. Coast. Shelf Sci., 52, 491–503.

    Article  Google Scholar 

  • Pawlowicz, R., O. Riche and M. Halverson (2007): The circulation and residence time of the Strait of Georgia using a simple mixing-box approach. Atmos.-Ocean, 45, 173–193.

    Article  Google Scholar 

  • Peña, M. A., K. L. Denman, J. R. Forbes, S. E. Calvert and R. E. Thomson (1996): Sinking particle fluxes from the euphotic zone over the continental slope of an eastern boundary current region. J. Mar. Res., 54, 1097–1122.

    Article  Google Scholar 

  • Perry, M. J., J. P. Bolger and D. C. English (1989): Primary production in Washington coastal waters. p. 117–138. In Coastal Oceanography of Washington and Oregon, ed. by M. R. Landry and B. M. Hickey, Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Simpson, J. J. and A. Zirino (1980): Biological control of pH in the Peruvian coastal upwelling area. Deep-Sea Res., 27, 733–744.

    Article  Google Scholar 

  • Smith, R. L. (1994): The physical processes of coastal ocean upwelling systems. p. 39–64. In Upwelling in the Ocean: Modern Processes and Ancient Records, ed. by C. P. Summerhayes, K.-C. Emeis, M. V. Angel, R. L. Smith and B. Zeitzschel, Wiley and Sons Ltd.

  • Sverdrup, H. U. (1942): The Oceans: Their Physics, Chemistry and General Biology. Prentice Hall, Englewood Cliffs, N.J., 1087 pp.

    Google Scholar 

  • Thomas, H., Y. Bozec, K. Elkalay and H. J. W. deBaar (2004): Enhanced open ocean storage of CO2 from shelf sea pumping. Science, 306, 5701, doi:10.1126/science.1103193.

    Google Scholar 

  • Thomson, R. E. and I. V. Fine (2003): Estimating mixed-layer depth from oceanic profile data. J. Atmos. Oceanic Technol., 20, 319–329.

    Article  Google Scholar 

  • Thomson, R. E. and D. Ware (1996): A current velocity index of ocean variability. J. Geophys. Res., 101, 14297–14310.

    Article  Google Scholar 

  • Tsunogai, S., S. Watanabe and T. Sato (1999): Is there a ‘continental shelf pump’ for the absorption of atmospheric CO2? Tellus, 51B, 701–712.

    Article  Google Scholar 

  • Wang, M., J. R. Overland and N. A. Bond (2009): Climate projections for selected large marine ecosystems. J. Mar. Sys., 350, doi:10.1016/j.marsys.2008.11.028.

  • Ware, D. M. and R. E. Thomson (2005): Bottom-up ecosystem trophic dynamics determine fish production in the Northeast Pacific. Science, 308, 1280–1284.

    Article  Google Scholar 

  • Waterhouse, A. F., S. E. Allen and A. W. Bowie (2009): Upwelling flow dynamics in long canyons at low Rossby number. J. Geophys. Res., 114, C05004, doi:10.1029/2008JC004956.

    Article  Google Scholar 

  • Wetz, M. S., B. Hales, P. A. Wheeler, Z. Chase and M. M. Whitney (2006): Riverine input of macronutrients, iron and organic matter to the coastal ocean off Oregon, USA during the winter. Limnol. Oceanogr., 51, 2221–2231.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debby Ianson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ianson, D., Feely, R.A., Sabine, C.L. et al. Features of coastal upwelling regions that determine net air-sea CO2 flux. J Oceanogr 65, 677–687 (2009). https://doi.org/10.1007/s10872-009-0059-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-009-0059-z

Keywords

Navigation