Skip to main content
Log in

Distributions and Relationships of CO2, O2, and Dimethylsulfide in the Changjiang (Yangtze) Estuary and Its Adjacent Waters in Summer

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

The distributions and relationships of O2, CO2, and dimethylsulfide (DMS) in the Changjiang (Yangtze) Estuary and its adjacent waters were investigated in June 2014. In surface water, mean O2 saturation level, partial pressure of CO2 (pCO2), and DMS concentrations (and ranges) were 110% (89%–167%), 374 μatm (91–640 μatm), and 8.53 nmol L−1 (1.10–27.50 nmol L−1), respectively. The sea-to-air fluxes (and ranges) of DMS and CO2 were 8.24 μmol m−2 d−1 (0.26–62.77 μmol m−2 d−1), and −4.7 mmol m−2 d−1 (−110.8-31.7 mmol m−2 d−1), respectively. Dissolved O2 was oversaturated, DMS concentrations were relatively high, and this region served as a sink of atmospheric CO2. The pCO2 was significantly and negatively correlated with the O2 saturation level, while the DMS concentration showed different positive relationships with the O2 saturation level in different water masses. In vertical profiles, a hypoxic zone existed below 20 m at a longitude of 123°E. The stratification of temperature and salinity caused by the Taiwan Warm Current suppressed seawater exchange between upper and lower layers, resulting in the formation of a hypoxic zone. Oxidative decomposition of organic detritus carried by the Changjiang River Diluted Water (CRDW) consumed abundant O2 and produced additional CO2. The DMS concentrations decreased because of low phytoplankton biomass in the hypoxic zone. Strong correlations appeared between the O2 saturation level, pCO2 and DMS concentrations in vertical profiles. Our results strongly suggested that CRDW played an important role in the distributions and relationships of O2, CO2, and DMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreae, M. O., and Barnard, W. R., 1983. Determination of trace quantities of dimethylsulfide in aqueous solutions. Analytical Chemistry, 55: 608–612.

    Article  Google Scholar 

  • Carpenter, L. J., Archer, S. D., and Beale, R., 2012. Oceanatmosphere trace gas exchange. Chemical Society Reviews, 41: 6473–6506.

    Article  Google Scholar 

  • Carpenter, L. J., and Nightingale, P. D., 2015. Chemistry and release of gases from the surface ocean. Chemical Reviews, 115: 4015–4034.

    Article  Google Scholar 

  • Chen, C. T. A., Zhai, W. D., and Dai, M. H., 2008. Riverine input and air-sea CO2 exchanges near the Changjiang (Yangtze) River Estuary: Status quo and implication on possible future changes in metabolic status. Continental Shelf Research, 28: 1476–1482.

    Article  Google Scholar 

  • Chen, C. T. A., and Borges, A. V., 2009. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep Sea Research Part II: Topical Studies in Oceanography, 56: 578–590.

    Article  Google Scholar 

  • Chen, C. T. A., Huang, T. H., Chen, Y. C., Bai, Y., He, X., and Kang, Y., 2013. Air-sea exchanges of CO2 in the world’s coastal seas. Biogeosciences, 10: 6509–6544.

    Article  Google Scholar 

  • Chen, C. T. A., Huang, T. H., Fu, Y. H., Bai, Y., and He, X., 2012. Strong sources of CO2 in upper estuaries become sinks of CO2 in large river plumes. Current Opinion in Environmental Sustainability, 4: 179–185.

    Article  Google Scholar 

  • Chen, J. S., Wang, F. Y., Xia, J. H., and Zhang, L. T., 2002. Major element chemistry of the Changjiang (Yangtze River). Chemical Geology, 187: 231–255.

    Article  Google Scholar 

  • Chou, W. C., Gong, G. C., Sheu, D. D., Hung, C. C., and Tseng, T. F., 2009a. Surface distributions of carbon chemistry parameters in the East China Sea in summer 2007. Journal of Geophysical Research: Oceans, 114: C07026.

    Google Scholar 

  • Chou, W. C., Gong, G. C., Sheu, D. D., Jan, S., Hung, C. C., and Chen, C. C., 2009b. Reconciling the paradox that the heterotrophic waters of the East China Sea shelf act as a significant CO2 sink during the summertime: Evidence and implications. Geophysical Research Letters, 36: 139–156.

    Article  Google Scholar 

  • Conley, D. J., Carstensen, J., Aigars, J., Axe, P., Bonsdorff, E., Eremina, T., Haahti, B. M., Humborg, C., Jonsson, P., Kotta, J., Lännegren, C., Larsson, U., Maximov, A., Medina, M. R., Lysiak-Pastuszak, E., Remeikaitė-Nikienė, N., Walve, J., Wilhelms, S., and Zillén, L., 2011. Hypoxia is increasing in the Coastal Zone of the Baltic Sea. Environmental Science & Technology, 45: 6777–6783.

    Article  Google Scholar 

  • Dacey, J. W. H., and Wakeham, S. G., 1986. Oceanic dimethylsulfide: Production during zooplankton grazing on phytoplankton. Science, 233: 1313–1316.

    Article  Google Scholar 

  • Dai, A. G., and Trenberth, K. E., 2002. Estimates of freshwater discharge from continents: latitudinal and seasonal variations. Journal of Hydrometeorology, 3: 666–687.

    Article  Google Scholar 

  • Delille, B., Jourdain, B., Borges, A. V., Tison, J. L., and Delille, D., 2007. Biogas (CO2, O2, dimethylsulfide) dynamics in spring Antarctic fast ice. Limnology and Oceanography, 52: 1367–1379.

    Article  Google Scholar 

  • Diaz, R. J., 2001. Overview of hypoxia around the world. Journal of Environmental Quality, 30: 275–281.

    Article  Google Scholar 

  • Dickson, A. G., 1990. Standard potential of the reaction: AgCl(s) +1/2H2(g)=Ag(s)+ HCl(aq), and the standard acidity constant of the ion HSO4 − in synthetic seawater from 273.15 to 318.15 K. Thermo, 22: 113–127.

    Article  Google Scholar 

  • Dickson, A. G., 1994. Determination of dissolved oxygen in sea water by Winkler titration. WHP Operations and Methods, 1–14.

    Google Scholar 

  • DOE, 1994. Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water, ver. 2, In: Dickson, A. G., and Goyet, C., eds., ORNL/ CDIAC-74.

  • Gage, D. A., Rhodes, D., Nolte, K. D., Hicks, W. A., Leustek, T., Cooper, A. J., and Hanson, A. D., 1997. A new route for synthesis of dimethylsulphoniopropionate in marine algae. Nature, 387: 891–894.

    Article  Google Scholar 

  • Gao, X., and Song, J., 2008. Dissolved oxygen and O2 flux across the water-air interface of the Changjiang Estuary in May 2003. Journal of Marine Systems, 74: 343–350.

    Article  Google Scholar 

  • Ginders, M. A., Collier, K. J., Duggan, I. C., and Hamilton, D. P., 2016. Influence of hydrological connectivity on plankton communities in natural and reconstructed side-arms of a Large New Zealand River. River Research and Applications, 32: 1675–1686.

    Article  Google Scholar 

  • Gonzalez, J. M., Kiene, R. P., and Moran, M. A., 1999. Transformation of sulfur compounds by an abundant lineage of marine bacteria in the α-subclass of the class Proteobacteria. Applied and Environmental Microbiology, 65: 3810–3819.

    Google Scholar 

  • Hill, R. W., White, B. A., Cottrell, M. T., and Dacey, J. W. H., 1998. Virus-mediated total release of dimethylsulfoniopropionate from marine phytoplankton: A potential climate process. Aquatic Microbial Ecology, 14: 1–6.

    Article  Google Scholar 

  • Huang, W. J., Cai, W. J., Wang, Y., Hu, X., Chen, B., Lohrenz, S. E., Chakraborty, S., He, R., Brandes, J., and Hopkinson, C. S., 2015. The response of inorganic carbon distributions and dynamics to upwelling-favorable winds on the northern Gulf of Mexico during summer. Continental Shelf Research, 111: 211–222.

    Article  Google Scholar 

  • Iverson, R. L., Neaehoof, F. L., and Andreae, M. O., 1989. Production of dimethylsulfoniumpropionate and dimethyl sulphide by phytoplankton in estuarine and coastal waters. Limnology and Oceanography, 34: 53–67.

    Article  Google Scholar 

  • Jiang, L. Q., Cai, W. J., Wang, Y., and Bauer, J. E., 2013. Influence of terrestrial inputs on continental shelf carbon dioxide. Biogeosciences, 10: 839–849.

    Article  Google Scholar 

  • Keller, M. D., Bellows, W. K., and Guillard, R. R. L., 1989. Dimethyl sulfide production in marine phytoplankton, In: Biogenic Sulfur in the Environment. Saltzman, E. S., and Cooper, W. J., eds., American Chemical Society, 167–182.

    Chapter  Google Scholar 

  • Laroche, D., Vézina, A. F., Levasseur, M., Gosselin, M., Stefels, J., Keller, M. D., Matrai, P. A., and Kwint, R. L. J., 1999. DMSP synthesis and exudation in phytoplankton: A modeling approach. Marine Ecology Progress Series, 180: 37–49.

    Article  Google Scholar 

  • Ledyard, K. M., and Dacey, J. W. H., 1994. Dimethylsulfide production from dimethylsulfoniopropionate by a marine bacterium. Marine Ecology Progress Series, 110: 95–103.

    Article  Google Scholar 

  • Lee, P. A., Mora, S. J. D., and Levasseur, M., 1999. A review of dimethylsulfoxide in aquatic environments. Atmosphere-Ocean, 37: 439–456.

    Article  Google Scholar 

  • Li, D., Zhang, J., Huang, D., Wu, Y., and Liang, J., 2002. Oxygen depletion off the Changjiang (Yangtze River) Estuary. Science in China Series D: Earth Sciences, 45: 1137–1146.

    Article  Google Scholar 

  • Li, J., and Zhang, C., 1998. Sediment resuspension and implications for turbidity maximum in the Changjiang Estuary. Marine Geology, 148: 117–124.

    Article  Google Scholar 

  • Lin, F. Z., Wu, Y. L., Yu, H. C., and Xian, W. W., 2008. Phytoplankton community structure in the Changjiang Estuary and its adjacent waters in 2004. Oceanologia et Limnologia Sinica, 39: 401–410 (in Chinese).

    Google Scholar 

  • Liss, P. S., and Merlivat, L., 1986. Air-sea gas exchange rates: Introduction and synthesis. In: The Role of Air-Sea Exchange in Geochemical Cycling. Buat-Ménard, P., ed., Springer Netherlands, Berlin, 113–127.

    Chapter  Google Scholar 

  • Liu, C., Gao, C., Zhang, H., Chen, S., Deng, P., Yue, X., and Guo, X., 2014. Production of dimethylsulfide and acrylic acid from dimethylsulfoniopropionate during growth of three marine microalgae. Chinese Journal of Oceanology and Limnology, 32: 1270–1279.

    Article  Google Scholar 

  • Liu, J. P., Xu, K. H., Li, A. C., Milliman, J. D., Velozzi, D. M., Xiao, S. B., and Yang, Z. S., 2007. Flux and fate of Yangtze River sediment delivered to the East China Sea. Geomorphology, 85: 208–224.

    Article  Google Scholar 

  • Lovelock, J. E., Maggs, R. J., and Rasmussen, R. A., 1972. Atmospheric dimethyl sulfide and the natural sulphur cycle. Nature, 237: 452–453.

    Article  Google Scholar 

  • Lu, Y., Li, H. L., Chen, J. F., Jin, H. Y., Chen, F. J., Gao, S. Q., Wang, K., Wang, W. L., and Bai, Y. C., 2011. Seasonal variations of the surface dissolved oxygen saturation in Changjiang River Estuary and its adjacent waters. Journal of Marine Sciences, 29: 71–77 (in Chinese).

    Google Scholar 

  • Luan, Q., Sun, J., Shen, Z., Song, S., and Wang, M., 2006. Phytoplankton assemblage of Yangtze River Estuary and the adjacent East China Sea in summer, 2004. Journal of Ocean University of China, 5: 123–131.

    Article  Google Scholar 

  • Malin, G., and Kirst, G. O., 1997. Algal production of dimethyl sulfide and its atmospheric role. Journal of Phycology, 33: 889–896.

    Article  Google Scholar 

  • Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicx, R. M., 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography, 18: 897–907.

    Article  Google Scholar 

  • Minami, H., Kano, Y., and Ogawa, K., 1999. Long-term variations of potential temperature and dissolved oxygen of the Japan Sea Proper Water. Journal of Oceanography, 55: 197–205.

    Article  Google Scholar 

  • Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S., Liddicoat, M. I., Boutin, J., and Upstill-Goddard, R. C., 2000. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochemical Cycles, 14: 373–387.

    Article  Google Scholar 

  • Niki, T., Shimizu, M., Fujishiro, A., and Kinoshita, J., 2007. Effects of salinity downshock on dimethylsulfide production. Journal of Oceanography, 63: 873–877.

    Article  Google Scholar 

  • Parsons, T. R., Maita, Y., and Lalli, C. M., 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford.

    Google Scholar 

  • Peng, T. H., Takahashi, T., Broecker, W. S., and Olafsson, J., 1987. Seasonal variability of carbon dioxide, nutrients and oxygen in the northern North Atlantic surface water: Observations and a model. Tellus B, 39: 439–458.

    Article  Google Scholar 

  • Pierrot, D., Lewis, E., and Wallace, D. W. R., 2006. MS excel program developed for CO 2 System Calculations. ORNL/ CDIAC-105a. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee.

    Google Scholar 

  • Quinn, P. K., and Bates, T. S., 2011. The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature, 480: 51–56.

    Article  Google Scholar 

  • Rabalais, N. N., and Turner, R. E., 2001. Hypoxia in the northern Gulf of Mexico: Description, causes and change, In: Coastal Hypoxia: Consequences for Living Resources and Ecosystems. Rabalais, N. N., and Turner, R. E., eds., American Geophysical Union, Washington, D C, 1–36.

    Chapter  Google Scholar 

  • Ross, S. W., Dalton, D. A., Kramer, S., and Christensen, B. L., 2001. Physiological (antioxidant) responses of estuarine fishes to variability in dissolved oxygen. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 130: 289–303.

    Google Scholar 

  • Shi, X. Y., Lu, R., Zhang, C. S., and Wang, X. L., 2006. Distribution and main influence factors process of dissolved oxygen in the adjacent area of the Changjiang Estuary in autumn. Periodical of Ocean University of China, 36: 287–290 (in Chinese).

    Google Scholar 

  • Stefels, J., 2000. Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. Journal of Sea Research, 43: 183–197.

    Article  Google Scholar 

  • Stefels, J., Steinke, M., Turner, S., Malin, G., and Belviso, S., 2007. Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry, 83: 245–275.

    Article  Google Scholar 

  • Steinke, M., Malin, G., Gibb, S. W., and Burkill, P. H., 2002. Vertical and temporal variability of DMSP lyase activity in a coccolithophorid bloom in the northern North Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 49: 3001–3016.

    Article  Google Scholar 

  • Steinke, M., Evans, C., Lee, G. A., and Malin, G., 2007. Substrate kinetics of DMSP-lyases in axenic cultures and mesocosm populations of Emiliania huxleyi. Aquatic Sciences, 69: 352–359.

    Article  Google Scholar 

  • Strickland, J. D. H., and Parsons, T. R., 1972. A Practical Handbook of Seawater Analysis. Fisheries Research Board of Canada, Ottawa.

    Google Scholar 

  • Sun, M. S., Zhang, G. L., Cao, X. P., Mao, X. Y., Li, J., and Ye, W. W., 2015. Methane distribution, flux, and budget in the East China Sea and Yellow Sea. Biogeosciences Discussions, 12: 7017–7053.

    Article  Google Scholar 

  • Sunda, W., Kieber, D. J., Kiene, R. P., and Huntsman, S., 2002. An antioxidant function for DMSP and DMS in marine algae. Nature, 418: 317–320.

    Article  Google Scholar 

  • Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W., and Sutherland, S. C., 1993. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study. Global Biogeochemical Cycles, 7: 843–878.

    Article  Google Scholar 

  • Tian, R. C., Hu, F. X., and Martin, J. M., 1993. Summer nutrient fronts in the Changjiang (Yangtze River) Estuary. Estuarine, Coastal and Shelf Science, 37: 27–41.

    Article  Google Scholar 

  • Tortell, P. D., Guéguen, C., Long, M. C., Payne, C. D., Lee, P., and DiTullio, G. R., 2011. Spatial variability and temporal dynamics of surface water pCO2, ΔO2/Ar and dimethylsulfide in the Ross Sea, Antarctica. Deep Sea Research Part I: Oceanographic Research Papers, 58: 241–259.

    Article  Google Scholar 

  • Tortell, P. D., Long, M. C., Payne, C. D., Alderkamp, A., Dutrieux, P., and Arrigo, K. R., 2012a. Spatial distribution of pCO2, ΔO2/Ar and dimethylsulfide (DMS) in polynya waters and the sea ice zone of the Amundsen Sea, Antarctica. Deep Sea Research Part II: Topical Studies in Oceanography, 71: 77–93.

    Article  Google Scholar 

  • Tortell, P. D., Merzouk, A., Ianson, D., Pawlowicz, R., and Yelland, D. R., 2012b. Influence of regional climate forcing on surface water pCO2, ΔO2/Ar and dimethylsulfide (DMS) along the southern British Columbia coast. Continental Shelf Research, 47: 119–132.

    Article  Google Scholar 

  • Turner, S. M., Malin, G., Nightingale, P. D., and Liss, P. S., 1996. Seasonal variation of dimethyl sulphide in the North Sea and an assessment of fluxes to the atmosphere. Marine Chemistry, 54: 245–262.

    Article  Google Scholar 

  • Visscher, P. T., Baumgartner, L. K., Buckley, D. H., Rogers, D. R., Hogan, M. E., Raleigh, C. D., Turk, K. A., and Des Marais, D. J., 2003. Dimethyl sulphide and methanethiol formation in microbial mats: Potential pathways for biogenic signatures. Environmental Microbiology, 5: 296–308.

    Article  Google Scholar 

  • Wang, D., Sun, J., Zhou, F., and Wu, Y., 2008. Phytoplankton of Changjiang (Yangze River) Estuary hypoxia area and the adjacent East China Sea in June 2006. Oceanologia et Limnologia Sinica, 39: 619–627 (in Chinese with English abstract).

    Google Scholar 

  • Wang, H., Dai, M., Liu, J., Kao, S. J., Zhang, C., Cai, W. J., Wang, G., Qian, W., Zhao, M., and Sun, Z., 2016. Eutrophication-Driven Hypoxia in the East China Sea off the Changjiang Estuary. Environmental Science & Technology, 50: 2255–2263.

    Article  Google Scholar 

  • Wang, S. L., Chen, C. T. A., Hong, G. H., and Chung, C. S., 2000. Carbon dioxide and related parameters in the East China Sea. Continental Shelf Research, 20: 525–544.

    Article  Google Scholar 

  • Wanninkhof, R., 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research, 97: 7373–7382.

    Article  Google Scholar 

  • Weiss, R. F., 1970. The solubility of nitrogen, oxygen and argon in water and seawater. Deep Sea Research and Oceanographic Abstracts, 17: 721–735.

    Article  Google Scholar 

  • Weiss, R. F., 1974. Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Marine Chemistry, 2: 203–215.

    Article  Google Scholar 

  • Weiss, R. F., and Price, B. A., 1980. Nitrous oxide solubility in water and seawater. Marine Chemistry, 8: 347–359.

    Article  Google Scholar 

  • Wolfe, G. V., Levasseur, M., Cantin, G., and Michaud, S., 2000. DMSP and DMS dynamics and microzooplankton grazing in the Labrador Sea: Application of dilution technique. Deep Sea Research Part I: Oceanographic Research Papers, 47: 2243–2264.

    Article  Google Scholar 

  • Xue, L., Cai, W. J., Hu, X., Sabine, C., Jones, S., Sutton, A. J., Jiang, L. Q., and Reimer, J. J., 2016. Sea surface carbon dioxide at the Georgia time series site (2006-2007): Air-sea flux and controlling processes. Progress in Oceanography, 140: 14–26.

    Article  Google Scholar 

  • Yang, G. P., 2000. Spatial distributions of dimethylsulfide in the South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 47: 177–192.

    Article  Google Scholar 

  • Yang, G. P., Song, Y. Z., Zhang, H. H., Li, C. X., and Wu, G. W., 2014. Seasonal variation and biogeochemical cycling of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the Yellow Sea and Bohai Sea. Journal of Geophysical Research: Oceans, 119: 8897–8915.

    Google Scholar 

  • Yang, G. P., Zhang, H. H., Su, L. P., and Zhou, L. M., 2009. Biogenic emission of dimethylsulfide (DMS) from the North Yellow Sea, China and its contribution to sulfate in aerosol during summer. Atmospheric Environment, 43: 2196–2203.

    Article  Google Scholar 

  • Yang, G. P., Zhang, H. H., Zhou, L. M., and Yang, J., 2011. Temporal and spatial variations of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the East China Sea and the Yellow Sea. Continental Shelf Research, 31: 1325–1335.

    Article  Google Scholar 

  • Yang, G. P., Zhang, S. H., Zhang, H. H., Yang, J., and Liu, C. Y., 2015. Distribution of biogenic sulfur in the Bohai Sea and northern Yellow Sea and its contribution to atmospheric sulfate aerosol in the late fall. Marine Chemistry, 169: 23–32.

    Article  Google Scholar 

  • Yang, S. L., Belkin, I. M., Belkina, A. I., Zhao, Q. Y., Zhu, J., and Ding, P. X., 2003. Delta response to decline in sediment supply from the Yangtze River: Evidence of the recent four decades and expectations for the next half-century. Estuarine, Coastal and Shelf Science, 57: 689–699.

    Article  Google Scholar 

  • Yin. K., Lin, Z., and Ke, Z., 2004. Temporal and spatial distribution of dissolved oxygen in the Pearl River Estuary and adjacent coastal waters. Continental Shelf Research, 24: 1935–1948.

    Article  Google Scholar 

  • Zhai, W., and Dai, M., 2009. On the seasonal variation of airsea CO2 fluxes in the outer Changjiang (Yangtze River) Estuary, East China Sea. Marine Chemistry, 117: 2–10.

    Article  Google Scholar 

  • Zhai, W. D., Chen, J. F., Jin, H. Y., Li, H. L., Liu, J. W., He, X. Q., and Bai, Y., 2014. Spring carbonate chemistry dynamics of surface waters in the northern East China Sea: Water mixing, biological uptake of CO2, and chemical buffering capacity. Journal of Geophysical Research: Oceans, 119: 5638–5653.

    Google Scholar 

  • Zhai, W., Dai, M., and Guo, X., 2007. Carbonate system and CO2 degassing fluxes in the inner estuary of Changjiang (Yangtze) River, China. Marine Chemistry, 107: 342–356.

    Article  Google Scholar 

  • Zhang, L., 1996. Nutrient elements in large Chinese estuaries. Continental Shelf Research, 16: 1023–1045.

    Article  Google Scholar 

  • Zhang, L., Xue, L., Song, M., and Jiang, C., 2010. Distribution of the surface partial pressure of CO2 in the southern Yellow Sea and its controls. Continental Shelf Research, 30: 293–304.

    Article  Google Scholar 

  • Zhang, L., Xue, M., Wang, M., Cai, W. J., Wang, L., and Yu, Z., 2014a. The spatiotemporal distribution of dissolved inorganic and organic carbon in the main stem of the Changjiang (Yangtze) River and the effect of the Three Gorges Reservoir. Journal of Geophysical Research: Biogeosciences, 119: 741–757.

    Google Scholar 

  • Zhang, S. H., Yang, G. P., Zhang, H. H., and Yang, J., 2014b. Spatial variation of biogenic sulfur in the south Yellow Sea and the East China Sea during summer and its contribution to atmospheric sulfate aerosol. Science of Total Environment, 488: 157–167.

    Article  Google Scholar 

  • Zhang, Y., Zhang, J., Wu, Y., and Zhu, Z., 2007. Characteristics of dissolved oxygen and its affecting factors in the Yangtze Estuary. Environmental Science, 28: 1649–1654 (in Chinese).

    Google Scholar 

  • Zhu, Z. Y., Hu, J., Song, G. D., Wu, Y., Zhang, J., and Liu, S. M., 2016. Phytoplankton-driven dark plankton respiration in the hypoxic zone off the Changjiang Estuary, revealed by in vitro incubations. Journal of Marine Systems, 154: 50–56.

    Article  Google Scholar 

  • Zubkov, M. V., Fuchs, B. M., Archer, S. D., Kiene, R. P., Amann, R., and Burkill, P. H., 2002. Rapid turnover of dissolved DMS and DMSP by defined bacterioplankton communities in the stratified euphotic zone of the North Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 49: 3017–3038.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the captain and crew of the R/V ‘Runjiang 1’ for their help during the in situ investigation. We are sincerely grateful to Wensheng Jiang, Lei Li, Anlong Li, Liangming Zhou and Tongtong Chen for assistance and cooperation during the research. We also thank two anonymous reviewers for their constructive comments, which greatly improved the manuscript. This work was financially supported by the National Key Research and Development Program of China (No. 2016YFA06 01301), the National Natural Science Foundation of China (Nos. 41176062, 41676065), the Fundamental Research Funds for the Central Universities (No. 201564015), and the projection of the Education Ministration of China ‘A comprehensive practical education base for Marine Science in the Changjiang Estuary and its adjacent sea area’

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunying Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Tan, T., Liu, C. et al. Distributions and Relationships of CO2, O2, and Dimethylsulfide in the Changjiang (Yangtze) Estuary and Its Adjacent Waters in Summer. J. Ocean Univ. China 17, 320–334 (2018). https://doi.org/10.1007/s11802-018-3541-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-018-3541-7

Keywords

Navigation