Skip to main content
Log in

Metal ions doped into merocyanine form of coumarin derivatives: nonlinear optical molecular switches

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In the present study, DFT calculations are carried out on domestically designed 7-methyl-2-phenyl-5’H-spiro[chromene-4,2′-chromeno[3,4-e][1,3]oxazin]-5′-one spiropyran and merocyanine derivatives to recognize alkali and alkaline earth metal ions. Detection of these metal ions can be attained by exploiting the variation of the second-order nonlinear optical properties. Merocyanine forms of these derivatives exhibit the ability to complex with different metal ions (Li+, Na+, K+, and Ca2+), which is associated with large contrasts in the hyper-Rayleigh scattering (HRS) response as a function of metal size and charge. Interestingly, in this study, Mero-Li+ shows significant nonlinear optical response with dynamic HRS first hyperpolarizability amounting to 7607 a.u., which is about nine times higher than its corresponding spiro form (846 a.u.) at the CAM-B3LYP/6-311G* level of theory. The present investigation clarifies the effect of metal nature on the enhancement of the first hyperpolarizability between the closed and open forms of the studied coumarin derivatives.

The coumarin-based compound 3 demonstrate the higher second-order NLO responses as a function of metal cation size and charges. Complexation of smaller alkali metal ions leads to the formation of stronger metal-ligand bonds, larger geometrical relaxations and significant enhancement of the HRS first hyperpolarizabilities. This present investigation elucidates the effect of metal nature on the enhancement of the first hyperpolarizability between the closed and open forms of studied coumarin derivatives

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Coe BJ (1999) Molecular materials possessing switchable quadratic nonlinear optical properties. Chem Eur J 5(9):2464–2471

  2. Delaire JA, Nakatani K (2000) Linear and nonlinear optical properties of photochromic molecules and materials. Chem Rev 100(5):1817–1846

  3. Lupo D (1995) Book review. Zyss J (ed) Molecular nonlinear optics: materials, physics, and devices. Academic, San Diego. Adv Mater 7(2):248–249

  4. Zyss J (1994) Quantum electronics-principles and applications. Molecular nonlinear optics. Academic, San Diego, p ii

  5. Boixel J, Guerchais V, Le Bozec H, Chantzis A, Jacquemin D, Colombo A et al (2015) Sequential double second-order nonlinear optical switch by an acido-triggered photochromic cyclometallated platinum(ii) complex. Chem Commun 51(37):7805–7808

    CAS  Google Scholar 

  6. Gauthier N, Argouarch G, Paul F, Toupet L, Ladjarafi A, Costuas K et al (2011) Electron-rich iron/ruthenium arylalkynyl complexes for third-order nonlinear optics: redox-switching between three states. Chem Eur J 17(20):5561–5577

  7. Sanguinet L, Pozzo J-L, Rodriguez V, Adamietz F, Castet F, Ducasse L et al (2005) Acido- and phototriggered NLO properties enhancement. J Phys Chem B 109(22):11139–11150

  8. Plaquet A, Champagne B, Kulhánek J, Bureš F, Bogdan E, Castet F et al (2011) Effects of the nature and length of the π-conjugated bridge on the second-order nonlinear optical responses of push–pull molecules including 4,5-Dicyanoimidazole and their protonated forms. Chem Phys Chem 12(17):3245–3252

  9. Cariati E, Dragonetti C, Lucenti E, Nisic F, Righetto S, Roberto D et al (2014) An acido-triggered reversible luminescent and nonlinear optical switch based on a substituted styrylpyridine: EFISH measurements as an unusual method to reveal a protonation–deprotonation NLO contrast. Chem Commun 50(13):1608–1610

    CAS  Google Scholar 

  10. Sliwa M, Spangenberg A, Malfant I, Lacroix PG, Métivier R, Pansu RB et al (2008) Structural, optical, and theoretical studies of a thermochromic organic crystal with reversibly variable second harmonic generation. Chem Mater 20(12):4062–4068

  11. Pielak K, Bondu F, Sanguinet L, Rodriguez V, Champagne B, Castet F (2017) Second-order nonlinear optical properties of multiaddressable indolinooxazolidine derivatives: joint computational and hyper-Rayleigh scattering investigations. J Phys Chem C 121(3):1851–1860

  12. Green KA, Cifuentes MP, Samoc M, Humphrey MG (2011) Metal alkynyl complexes as switchable NLO systems. Coord Chem Rev 255(21):2530–2541

    CAS  Google Scholar 

  13. Di Bella S, Oliveri IP, Colombo A, Dragonetti C, Righetto S, Roberto D (2012) An unprecedented switching of the second-order nonlinear optical response in aggregate bis(salicylaldiminato)zinc(ii) Schiff-base complexes. Dalton Trans 41(23):7013–7016

    PubMed  Google Scholar 

  14. Castet F, Rodriguez V, Pozzo J-L, Ducasse L, Plaquet A, Champagne B (2013) Design and characterization of molecular nonlinear optical switches. Acc Chem Res 46(11):2656–2665

  15. Koçer A, Walko M, Meijberg W, Feringa BL (2005) A light-actuated Nanovalve derived from a channel protein. Science 309(5735):755

    PubMed  Google Scholar 

  16. Klajn R (2014) Spiropyran-based dynamic materials. Chem Soc Rev 43(1):148–184

    CAS  PubMed  Google Scholar 

  17. Chen KJ, Laurent AD, Jacquemin D (2014) Strategies for designing diarylethenes as efficient nonlinear optical switches. J Phys Chem C 118(8):4334–4345

  18. Jaunet-Lahary T, Chantzis A, Chen KJ, Laurent AD, Jacquemin D (2014) Designing efficient azobenzene and azothiophene nonlinear optical photochromes. J Phys Chem C 118(49):28831–28841

  19. Lin J, Sa R, Zhang M, Wu K (2015) Exploring second-order nonlinear optical properties and switching ability of a series of dithienylethene-containing, cyclometalated platinum complexes: a theoretical investigation. J Phys Chem A 119(29):8174–8181

    CAS  PubMed  Google Scholar 

  20. Aubert V, Guerchais V, Ishow E, Hoang-Thi K, Ledoux I, Nakatani K et al (2008) Efficient Photoswitching of the Nonlinear optical properties of dipolar photochromic zinc(II) complexes. Angew Chem Int Ed 47(3):577–580

    CAS  Google Scholar 

  21. Castet F, Benoit C (2016) Switching of the nonlinear optical responses of anil derivatives: from dilute solutions to the solid state. Tautomerism: concepts and applications in science and technology. Wiley-VCH, Weinheim, pp 175–202

  22. Plaquet A, Guillaume M, Champagne B, Castet F, Ducasse L, Pozzo J-L et al (2008) In silico optimization of merocyanine-spiropyran compounds as second-order nonlinear optical molecular switches. Phys Chem Chem Phys 10(41):6223–6232

    CAS  PubMed  Google Scholar 

  23. Nitadori H, Ordronneau L, Boixel J, Jacquemin D, Boucekkine A, Singh A et al (2012) Photoswitching of the second-order nonlinearity of a tetrahedral octupolar multi DTE-based copper(i) complex. Chem Commun 48(84):10395–10397

    CAS  Google Scholar 

  24. Coe BJ, Houbrechts S, Asselberghs I, Persoons A (1999) Efficient, reversible redox-switching of molecular first Hyperpolarizabilities in ruthenium(II) complexes possessing large quadratic optical nonlinearities. Angew Chem Int Ed 38(3):366–369

    CAS  Google Scholar 

  25. Boubekeur-Lecaque L, Coe BJ, Clays K, Foerier S, Verbiest T, Asselberghs I (2008) Redox-switching of nonlinear optical behavior in Langmuir−Blodgett thin films containing a ruthenium(II) ammine complex. J Am Chem Soc 130(11):3286–3287

  26. Liu C-G, Guan X-H, Su Z-M (2011) Computational study on redox-switchable 2D Second-Order Nonlinear optical properties of push−pull mono-tetrathiafulvalene-bis(salicylaldiminato) Zn(II) Schiff Base complexes. J Phys Chem C 115(13):6024–6032

  27. Beaujean P, Bondu F, Plaquet A, Garcia-Amorós J, Cusido J, Raymo FM et al (2016) Oxazines: a new class of second-order nonlinear optical switches. J Am Chem Soc 138(15):5052–5062

  28. Giraud M, Léaustic A, Guillot R, Yu P, Lacroix PG, Nakatani K et al (2007) Dithiazolylethene-based molecular switches for nonlinear optical properties and fluorescence: synthesis, crystal structure and ligating properties. J Mater Chem 17(41):4414–4425

    CAS  Google Scholar 

  29. Plaquet A, Champagne B, Castet F, Ducasse L, Bogdan E, Rodriguez V et al (2009) Theoretical investigation of the dynamic first hyperpolarizability of DHA–VHF molecular switches. New J Chem 33(6):1349–1356

    CAS  Google Scholar 

  30. Garza AJ, Osman OI, Wazzan NA, Khan SB, Scuseria GE, Asiri AM (2013) Photochromic and nonlinear optical properties of fulgides: a density functional theory study. Comput Theor Chem 1022:82–85

    CAS  Google Scholar 

  31. Sliwa M, Létard S, Malfant I, Nierlich M, Lacroix PG, Asahi T et al (2005) Design, synthesis, structural and nonlinear optical properties of photochromic crystals: toward reversible molecular switches. Chem Mater 17(18):4727–4735

  32. Bogdan E, Plaquet A, Antonov L, Rodriguez V, Ducasse L, Champagne B et al (2010) Solvent effects on the second-order nonlinear optical responses in the keto−enol equilibrium of a 2-Hydroxy-1-naphthaldehyde derivative. J Phys Chem C 114(29):12760–12768

  33. De S, Ray M, Pati AY, Das PK (2013) Base triggered enhancement of first Hyperpolarizability of a keto–enol tautomer. J Phys Chem B 117(48):15086–15092

    CAS  PubMed  Google Scholar 

  34. Asselberghs I, Zhao Y, Clays K, Persoons A, Comito A, Rubin Y (2002) Reversible switching of molecular second-order nonlinear optical polarizability through proton-transfer. Chem Phys Lett 364(3):279–283

    CAS  Google Scholar 

  35. van Bezouw S, Campo J, Lee S-H, Kwon OP, Wenseleers W (2015) Organic compounds with large and high-contrast pH-switchable Nonlinear optical response. J Phys Chem C 119(37):21658–21663

    Google Scholar 

  36. Wang W-Y, Ma N-N, Sun S-L, Qiu Y-Q (2014) Impact of redox stimuli on ferrocene–Buckybowl complexes: switchable optoelectronic and Nonlinear optical properties. Organometallics 33(13):3341–3352

    CAS  Google Scholar 

  37. Minkin VI Photoswitchable molecular systems based on Spiropyrans and Spirooxazines. Molecular switches

  38. Willner I, Lion-Dagan M, Katz E (1996) Photostimulation of dinitrospiropyran-modified glucose oxidase in the presence of DNP-antibody-A biphase-switch for the amperometric transduction of recorded optical signals. Chem Commun (5):623–624

  39. Ye J-T, Wang L, Wang H-Q, Chen Z-Z, Qiu Y-Q, Xie H-M (2017) Spirooxazine molecular switches with nonlinear optical responses as selective cation sensors. RSC Adv 7(2):642–650

    CAS  Google Scholar 

  40. Champagne B, Plaquet A, Pozzo J-L, Rodriguez V, Castet F (2012) Nonlinear optical molecular switches as selective cation sensors. J Am Chem Soc 134(19):8101–8103

    CAS  PubMed  Google Scholar 

  41. Tamai N, Miyasaka H (2000) Ultrafast dynamics of photochromic systems. Chem Rev 100(5):1875–1890

    CAS  PubMed  Google Scholar 

  42. Huang Y, Li F, Ye C, Qin M, Ran W, Song Y (2015) A photochromic sensor microchip for high-performance multiplex metal ions detection. Sci Rep 5:9724

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun Y-F, Xu S-H, Wu R-T, Wang Z-Y, Zheng Z-B, Li J-K et al (2010) The synthesis, structure and photoluminescence of coumarin-based chromophores. Dyes Pigments 87(2):109–118

    CAS  Google Scholar 

  44. Huang K, Jiao X, Liu C, Wang Q, Qiu X, Zheng D et al (2017) Highly selective and sensitive fluorescent probe for mercury ions based on a novel rhodol-coumarin hybrid dye. Dyes Pigments 142:437–446

    CAS  Google Scholar 

  45. Norman P (2011) A perspective on nonresonant and resonant electronic response theory for time-dependent molecular properties. Phys Chem Chem Phys 13(46):20519–20535

    CAS  PubMed  Google Scholar 

  46. Zhang T, Yan L-K, Cong S, Guan W, Su Z-M (2014) Prediction of second-order nonlinear optical properties of Wells–Dawson polyoxometalate derivatives [X–C(CH2O)3P2M′3M15O59]6− (X = NO2, NH2, and CH3, M′ = V and Nb, M = W and Mo). Inorg Chem Front 1(1):65–70

    CAS  Google Scholar 

  47. Wang L-J, Zhong R-L, Sun S-L, Xu H-L, Pan X-M, Su Z-M (2014) The V-shaped polar molecules encapsulated into Cs (10528)-C72: stability and nonlinear optical response. Dalton Trans 43(25):9655–9660

    CAS  PubMed  Google Scholar 

  48. Wang L-J, Sun S-L, Zhong R-L, Liu Y, Wang D-L, Wu H-Q et al (2013) The encapsulated lithium effect of Li@C60Cl8 remarkably enhances the static first hyperpolarizability. RSC Adv 3(32):13348–13352

    CAS  Google Scholar 

  49. Gao Y, Zhong R-L, Xu H-L, Sun S-L, Su Z-M (2015) The effect of ring sizes and alkali metal cations on interaction energy, charge transfer and nonlinear optical properties of crown ether derivatives. RSC Adv 5(38):30107–30119

    Google Scholar 

  50. Xu H-L, Zhang C-C, Sun S-L, Su Z-M (2012) Assembly of Sandwich-like supermolecules Li salts CpLi-C60: structures, stabilities, and nonlinear optical properties. Organometallics 31(12):4409–4414

  51. Champagne B, Perpète EA, Jacquemin D, van Gisbergen SJA, Baerends E-J, Soubra-Ghaoui C et al (2000) Assessment of conventional density functional schemes for computing the dipole moment and (hyper)polarizabilities of push−pull π-conjugated systems. J Phys Chem A 104(20):4755–4763

    CAS  Google Scholar 

  52. Herebian D, Wieghardt KE, Neese F (2003) Analysis and interpretation of metal-radical coupling in a series of square planar nickel complexes: correlated ab initio and density functional investigation of [Ni(LISQ)2] (LISQ=3,5-di-tert-butyl-o-diiminobenzosemiquinonate(1-)). J Am Chem Soc 125(36):10997–11005

    CAS  PubMed  Google Scholar 

  53. Espa D, Pilia L, Marchiò L, Artizzu F, Serpe A, Mercuri ML et al (2012) Mixed-ligand Pt(ii) dithione-dithiolato complexes: influence of the dicyanobenzodithiolato ligand on the second-order NLO properties. Dalton Trans 41(12):3485–3493

    CAS  PubMed  Google Scholar 

  54. Hu Y-Y, Sun S-L, Zhong R-L, Xu H-L, Su Z-M (2011) Novel trumpet-shaped conjugation bridge (carbon nanocone) for nonlinear optical materials. J Phys Chem C 115(38):18545–18551

  55. Zhang C-C, Xu H-L, Hu Y-Y, Sun S-L, Su Z-M (2011) Quantum chemical research on structures, linear and nonlinear optical properties of the Li@n-Acenes salt (n = 1, 2, 3, and 4). J Phys Chem A 115(10):2035–2040

  56. Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) A long-range-corrected time-dependent density functional theory. J Chem Phys 120(18):8425–8433

    CAS  PubMed  Google Scholar 

  57. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1):51–57

    CAS  Google Scholar 

  58. Plaquet A, Champagne B, Castet F (2014) Nonlinear optical molecular switches for alkali ion identification. Molecules 19(7):10574

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Paramonov SV, Lokshin V, Fedorova OA (2011) Spiropyran, chromene or spirooxazine ligands: insights into mutual relations between complexing and photochromic properties. J Photochem Photobiol C: Photochem Rev 12(3):209–236

    CAS  Google Scholar 

  60. Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205(1):3–40

    CAS  Google Scholar 

  61. de Silva AP, Vance TP, West MES, Wright GD (2008) Bright molecules with sense, logic, numeracy and utility. Org Biomolec Chem 6(14):2468–2480

    Google Scholar 

  62. Tomasi J, Persico M (1994) Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem Rev 94(7):2027–2094

    CAS  Google Scholar 

  63. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105(8):2999–3094

    CAS  PubMed  Google Scholar 

  64. Bersohn R, Pao YH, Frisch HL (1966) Double-quantum light scattering by molecules. J Chem Phys 45(9):3184–3198

    CAS  Google Scholar 

  65. Reis H (2006) Problems in the comparison of theoretical and experimental hyperpolarizabilities revisited. J Chem Phys 125(1):014506

    CAS  PubMed  Google Scholar 

  66. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2009) Gaussian 09 revision a.02. Gaussian Inc, Wallingford

  67. Verbiest TC, Rodriguez K (2009) Second-order nonlinear optical characterizations techniques: an introduction. CRC, New York

  68. Zhang L, Qi D, Zhao L, Chen C, Bian Y, Li W (2012) Density functional theory study on subtriazaporphyrin derivatives: dipolar/octupolar contribution to the second-order nonlinear optical activity. J Phys Chem A 116(41):10249–10256

Download references

Acknowledgments

H-L Xu acknowledges support for the project funded by the China Postdoctoral Science Foundation (2014 M560227) and the Fundamental Research Funds for the Central Universities 2412018ZD008. S Muhamma d at the King Khalid University is thankful to the Deanship of Scientific Research at King Khalid University for funding this work through Research Group Project under grant number (R. G. P.1/165/40).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-liang Xu or Zhong-Min Su.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arif, A.M., Yousaf, A., Zhong, RL. et al. Metal ions doped into merocyanine form of coumarin derivatives: nonlinear optical molecular switches. J Mol Model 25, 212 (2019). https://doi.org/10.1007/s00894-019-4068-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4068-6

Keywords

Navigation