Skip to main content
Log in

Toward a better understanding of the interaction between TGF-β family members and their ALK receptors

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Transforming growth factor-beta (TGF-β) proteins are a family of structurally related extracellular proteins that trigger their signaling functions through interaction with the extracellular domains of their cognate serine/threonine kinase receptors. The specificity of TGF-β/receptor binding is complex and gives rise to multiple functional roles. Additionally, it is not completely understood at the atomic level. Here, we use the most reliable computational methods currently available to study systems involving activin-like kinase (ALK) receptors ALK4 and ALK7 and their multiple TGF-β ligands. We built models for all these proteins and their complexes for which experimental structures are not available. By analyzing the surfaces of interaction in six different TGF-β/ALK complexes we could infer which are the structural distinctive features of the ligand-receptor binding mode. Furthermore, this study allowed us to rationalize why binding of the growth factors GDF3 and Nodal to the ALK4 receptor requires the Cripto co-factor, whilst binding to the ALK7 receptor does not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ActRII:

Activin type II receptor

ACVR1:

Activin A type 1 receptor

ALK:

Activin receptor-like kinase

ASA:

Accessible surface area

BMP:

Bone morphogenetic protein

BMPR1A:

Bone morphogenetic protein type 1A receptor or ALK3

BMPRII:

Bone morphogenetic protein type II receptor

BSA:

Buried surface area

ECD:

Extracellular domain

GDF:

Growth/differentiation factor

MISRII:

Mullerian inhibitor substance type II receptor

PP:

Pair potential

TGF-β:

Transforming growth factor-beta

TGFBRI:

Type I TGF-β receptor or ALK5

TGF-βRII:

Type II TGF-β receptor

References

  1. Lin SJ, Lerch TF, Cook RW, Jardetzky TS, Woodruff TK (2006) The structural basis of TGF-beta, bone morphogenetic protein, and activin ligand binding. Reproduction 132:179–190

    Article  CAS  Google Scholar 

  2. Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700

    Article  CAS  Google Scholar 

  3. Chang H, Brown CW, Matzuk MM (2002) Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev 23:787–823

    Article  CAS  Google Scholar 

  4. Kingsley DM (1994) The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8:133–146

    Article  CAS  Google Scholar 

  5. Bierie B, Moses HL (2006) Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6:506–520. doi:10.1038/nrc1926

    Article  CAS  Google Scholar 

  6. Pardali K, Moustakas A (2007) Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta 1775:21–62. doi:10.1016/j.bbcan.2006.06.004

    CAS  Google Scholar 

  7. Munir S, Xu G, Wu Y, Yang B, Lala PK, Peng C (2004) Nodal and ALK7 inhibit proliferation and induce apoptosis in human trophoblast cells. J Biol Chem 279:31277–31286

    Article  CAS  Google Scholar 

  8. Li MO, Flavell RA (2008) TGF-beta: a master of all T cell trades. Cell 134:392–404. doi:10.1016/j.cell.2008.07.025

    Article  CAS  Google Scholar 

  9. Watabe T, Miyazono K (2009) Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell Res 19(1):103–115. doi:10.1038/cr.2008.323

    Article  CAS  Google Scholar 

  10. Dennler S, Goumans MJ, ten Dijke P (2002) Transforming growth factor beta signal transduction. J Leukoc Biol 71:731–740

    CAS  Google Scholar 

  11. Rosbottom A, Scudamore CL, von der Mark H, Thornton EM, Wright SH, Miller HR (2002) TGF-beta 1 regulates adhesion of mucosal mast cell homologues to laminin-1 through expression of integrin alpha 7. J Immunol 169:5689–5695

    CAS  Google Scholar 

  12. Kandasamy M, Reilmann R, Winkler J, Bogdahn U, Aigner L (2011) Transforming growth factor-beta signaling in the neural stem cell niche: a therapeutic target for Huntington's disease. Neurol Res Int 2011:124256. doi:10.1155/2011/124256

  13. Krieglstein K, Strelau J, Schober A, Sullivan A, Unsicker K (2002) TGF-beta and the regulation of neuron survival and death. J Physiol Paris 96:25–30

    Article  CAS  Google Scholar 

  14. Hogan BL (1996) Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 10:1580–1594

    Article  CAS  Google Scholar 

  15. Massague J (2008) TGFbeta in Cancer. Cell 134:215–230. doi:10.1016/j.cell.2008.07.001

    Article  CAS  Google Scholar 

  16. Padua D, Massague J (2009) Roles of TGFbeta in metastasis. Cell Res 19:89–102. doi:10.1038/cr.2008.316

    Article  CAS  Google Scholar 

  17. Goumans MJ, Liu Z, ten Dijke P (2009) TGF-beta signaling in vascular biology and dysfunction. Cell Res 19:116–127. doi:10.1038/cr.2008.326

    Article  CAS  Google Scholar 

  18. Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor beta in human disease. N Engl J Med 342(18):1350–1358. doi:10.1056/NEJM200005043421807

    Article  CAS  Google Scholar 

  19. de Caestecker M (2004) The transforming growth factor-beta superfamily of receptors. Cytokine Growth Factor Rev 15:1–11

    Article  Google Scholar 

  20. Barbault F, Landon C, Guenneugues M, Meyer JP, Schott V, Dimarcq JL, Vovelle F (2003) Solution structure of Alo-3: a new knottin-type antifungal peptide from the insect Acrocinus longimanus. Biochemistry 42:14434–14442. doi:10.1021/bi035400o

    Article  CAS  Google Scholar 

  21. McDonald NQ, Lapatto R, Murray-Rust J, Gunning J, Wlodawer A, Blundell TL (1991) New protein fold revealed by a 2.3-A resolution crystal structure of nerve growth factor. Nature 354:411–414. doi:10.1038/354411a0

    Article  CAS  Google Scholar 

  22. Vitt UA, Hsu SY, Hsueh AJ (2001) Evolution and classification of cystine knot-containing hormones and related extracellular signaling molecules. Mol Endocrinol 15:681–694

    Article  CAS  Google Scholar 

  23. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  CAS  Google Scholar 

  24. Greenwald J, Fischer WH, Vale WW, Choe S (1999) Three-finger toxin fold for the extracellular ligand-binding domain of the type II activin receptor serine kinase. Nat Struct Biol 6:18–22

    Article  CAS  Google Scholar 

  25. Thompson TB, Woodruff TK, Jardetzky TS (2003) Structures of an ActRIIB:activin A complex reveal a novel binding mode for TGF-beta ligand:receptor interactions. EMBO J 22:1555–1566

    Article  CAS  Google Scholar 

  26. Sieber C, Kopf J, Hiepen C, Knaus P (2009) Recent advances in BMP receptor signaling. Cytokine Growth Factor Rev 20:343–355

    Article  CAS  Google Scholar 

  27. Allendorph GP, Vale WW, Choe S (2006) Structure of the ternary signaling complex of a TGF-beta superfamily member. Proc Natl Acad Sci USA 103:7643–7648

    Article  CAS  Google Scholar 

  28. Kirsch T, Sebald W, Dreyer MK (2000) Crystal structure of the BMP-2-BRIA ectodomain complex. Nat Struct Biol 7:492–496

    Article  CAS  Google Scholar 

  29. Santibanez JF, Quintanilla M, Bernabeu C (2011) TGF-beta/TGF-beta receptor system and its role in physiological and pathological conditions. Clin Sci (Lond) 121:233–251

    Article  CAS  Google Scholar 

  30. Andersson O, Korach-Andre M, Reissmann E, Ibanez CF, Bertolino P (2008) Growth/differentiation factor 3 signals through ALK7 and regulates accumulation of adipose tissue and diet-induced obesity. Proc Natl Acad Sci USA 105:7252–7256

    Article  CAS  Google Scholar 

  31. Andersson O, Reissmann E, Ibanez CF (2006) Growth differentiation factor 11 signals through the transforming growth factor-beta receptor ALK5 to regionalize the anterior-posterior axis. EMBO Rep 7:831–837

    CAS  Google Scholar 

  32. Chen C, Ware SM, Sato A, Houston-Hawkins DE, Habas R, Matzuk MM, Shen MM, Brown CW (2006) The Vg1-related protein Gdf3 acts in a Nodal signaling pathway in the pre-gastrulation mouse embryo. Development 133:319–329

    Article  CAS  Google Scholar 

  33. Reissmann E, Jornvall H, Blokzijl A, Andersson O, Chang C, Minchiotti G, Persico MG, Ibanez CF, Brivanlou AH (2001) The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development. Genes Dev 15:2010–2022

    Article  CAS  Google Scholar 

  34. Walpole IR, Grauaug A (1979) Intra-uterine infection with herpes simplex virus and observed radiological changes. Aust Paediatr J 15:123–125

    CAS  Google Scholar 

  35. Tsuchida K, Nakatani M, Uezumi A, Murakami T, Cui X (2008) Signal transduction pathway through activin receptors as a therapeutic target of musculoskeletal diseases and cancer. Endocr J 55:11–21

    Article  CAS  Google Scholar 

  36. Levine AJ, Brivanlou AH (2006) GDF3, a BMP inhibitor, regulates cell fate in stem cells and early embryos. Development 133:209–216

    Article  CAS  Google Scholar 

  37. Schier AF, Shen MM (2000) Nodal signalling in vertebrate development. Nature 403:385–389

    Article  CAS  Google Scholar 

  38. Calvanese L, Marasco D, Doti N, Saporito A, D’Auria G, Paolillo L, Ruvo M, Falcigno L (2010) Structural investigations on the Nodal-Cripto binding: a theoretical and experimental approach. Biopolymers 93:1011–1021

    Article  CAS  Google Scholar 

  39. Cash JN, Rejon CA, McPherron AC, Bernard DJ, Thompson TB (2009) The structure of myostatin:follistatin 288: insights into receptor utilization and heparin binding. EMBO J 28:2662–2676

    Article  CAS  Google Scholar 

  40. Soding J (2005) Protein homology detection by HMM–HMM comparison. Bioinformatics 21:951–960

    Article  Google Scholar 

  41. Soding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33 (Web Server issue):W244–W248

  42. Fiser A, Sali A (2003) Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491

    Article  CAS  Google Scholar 

  43. Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294:93–96

    Article  CAS  Google Scholar 

  44. Benkert P, Tosatto SC, Schomburg D (2008) QMEAN: A comprehensive scoring function for model quality assessment. Proteins 71:261–277

    Article  CAS  Google Scholar 

  45. de Vries SJ, van Dijk M, Bonvin AM (2010) The HADDOCK web server for data-driven biomolecular docking. Nat Protoc 5:883–897

    Article  Google Scholar 

  46. Comeau SR, Gatchell DW, Vajda S, Camacho CJ (2004) ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 20:45–50

    Article  CAS  Google Scholar 

  47. Kozakov D, Brenke R, Comeau SR, Vajda S (2006) PIPER: an FFT-based protein docking program with pairwise potentials. Proteins 65:392–406

    Article  CAS  Google Scholar 

  48. Tina KG, Bhadra R, Srinivasan N (2007) PIC: Protein Interactions Calculator. Nucleic Acids Res 35 (Web Server issue):W473–W476

  49. Gohlke H, Hendlich M, Klebe G (2000) Knowledge-based scoring function to predict protein-ligand interactions. J Mol Biol 295:337–356

    Article  CAS  Google Scholar 

  50. Kruger DM, Gohlke H DrugScorePPI webserver: fast and accurate in silico alanine scanning for scoring protein-protein interactions. Nucleic Acids Res 38 (Web Server issue):W480–W486

  51. Kortemme T, Kim DE, Baker D (2004) Computational alanine scanning of protein–protein interfaces. Sci STKE 2004 (219):pl2

  52. Tuncbag N, Gursoy A, Keskin O (2009) Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy. Bioinformatics 25:1513–1520

    Article  CAS  Google Scholar 

  53. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8:127–134

    Article  CAS  Google Scholar 

Download references

Acknowledgments

King Abdullah University of Science and Technology (KAUST; Award No. KUK-I1-012-43); Fondazione Roma and the Italian Ministry of Health (contract no.onc_ord 25/07, FIRB ITALBIONET and PROTEOMICA).

Ministero dell’Università e della Ricerca Scientifica (MIUR), project PRIN n° prot. 2008F5A3AF_001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Falcigno.

Additional information

Valentina Romano and Domenico Raimondo contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Topology diagrams of a TGF-β protein (a) and of the extracellular domain of an ALK receptor (b). In both schemes, the β-strands are represented by large arrows in pink and the α-helices are shown as red cylinders. The small blue arrows indicate the directionality of the protein chain, from the N-terminus to the C-terminus. (PDF 33 kb)

Fig. S2

The target–template sequence alignments obtained by HHpred of (a) GDF3 (UniProt ID: Q9NR23) and BMP2, (b) GDF11 (UniProt ID: O95390) and GDF8, (c), ALK4-ECD (UniProt ID: P36896) and ALK5-ECD , (d) ALK7-ECD (UniProt ID: Q8NER5) with ALK5-ECD and ALK3-loop 23. Shaded columns Conserved residues. (PDF 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romano, V., Raimondo, D., Calvanese, L. et al. Toward a better understanding of the interaction between TGF-β family members and their ALK receptors. J Mol Model 18, 3617–3625 (2012). https://doi.org/10.1007/s00894-012-1370-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1370-y

Keywords

Navigation