Skip to main content
Log in

A molecular modeling study on the enantioselectivity of aryl alkyl ketone reductions by a NADPH-dependent carbonyl reductase

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Automated structural analysis of Sporobolomyces salmonicolor carbonyl reductase (SSCR) indicates that the two largest potential receptor sites are in the vicinity of the nicotinamide reductant. The largest receptor site is a scalene triangle with sides of ∼8 Å by 9 Å by 13 Å, which is narrow in width; one corner is surrounded by hydrophilic residues that can favorably bond with the ketone oxygen. Docking aryl alkyl ketones shows a distinct preference for binding to the largest receptor site, and for conformations that place the carbonyl oxygen of the substrate in the hydrophilic corner of the largest receptor site. Favorable docking conformations for aryl alkyl ketones fall into two low-energy ensembles. These conformational ensembles are distinguished by the positions of the substituents, presenting either the Si-or Re-face of the ketone to the nicotinamide reductant. For the ketones investigated here, there is a correspondence between the major enantiomer of the alcohol obtained from the reduction of the ketone and the conformer found to have the most stable interaction energy with the receptor site in all cases. The receptor site modeling, docking simulations, molecular dynamics, and enzyme-substrate geometry optimizations lead to a model for understanding the enantioselectivity of this NADPH-dependent carbonyl reductase.

Receptor site model for NADPH-dependent carbonyl reductase

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Faber K (2004) Biotransformation in organic chemistry. Springer, Berlin Heidelberg New York

    Google Scholar 

  2. Ema T, Yagasaki H, Okita N, Takeda M, Sakai T (2006) Tetrahedron 62:6143–6149

    Article  CAS  Google Scholar 

  3. Edegger K, Stampfer W, Seisser B, Faber K, Mayer SF, Oehrlein R, Hafner A, Kroutil W (2006) Eur J Org Chem 1904–1909

  4. Poessl TM, Kosjek B, Ellmer U, Gruber CC, Edegger K, Faber K, Hildebrandt P, Bornscheuer UT, Kroutil W (2005) Adv Synth Catal 347:1827–1834

    Article  CAS  Google Scholar 

  5. Ema T, Yagasaki H, Okita N, Nishikawa K, Korenaga T, Sakai T (2005) Tetrahedron: Asymmetry 16:1075–1078

    Article  CAS  Google Scholar 

  6. Soni P, Kaur G, Chakraborti AK, Banerjee UC (2005) Tetrahedron: Asymmetry 16:2425–2428

    Article  CAS  Google Scholar 

  7. Kaluzna IA, Matsuda T, Sewell AK, Stewart JD (2004) J Am Chem Soc 126:12827–12832

    Article  CAS  Google Scholar 

  8. van Deursen R, Stampfer W, Edegger K, Faber K, Kroutil W (2004) J Mol Catal B: Enzymatic 31:159–163

    Article  Google Scholar 

  9. Zhu D, Mukherjee C, Rozzell JD, Kambourakis S, Hua L (2006) Tetrahedron 62:901–905

    Article  CAS  Google Scholar 

  10. Zhu D, Rios BE, Rozzell JD, Hua L (2005) Tetrahedron: Asymmetry 16:1541–1546

    Article  CAS  Google Scholar 

  11. Zhu D, Mukherjee C, Hua L (2005) Tetrahedron: Asymmetry 16:3275–3278

    Article  CAS  Google Scholar 

  12. Kita K, Fukura T, Nakase K-I, Okamoto K, Yanase H, Kataoka M, Shimizu S (1999) Appl Environ Microbiol 65:5207–5211

    CAS  Google Scholar 

  13. Zhu D, Yang Y, Buynak JD, Hua L (2006) Org Biomol Chem 4:2690–2695

    Article  CAS  Google Scholar 

  14. Zhu D, Hua L (2006) J Org Chem: 71:9484–9486

    Google Scholar 

  15. Kamitori S, Iguchi A, Ohtaki A, Yamada M, Kita K (2005) J Mol Biol 352:551–558

    Article  CAS  Google Scholar 

  16. Chemical Computing Group, Inc., http://www.chemcomp.com

  17. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  18. Gasteiger J, Marsili M (1980) Tetrahedron 36:3219–3222

    Article  CAS  Google Scholar 

  19. Liang J, Edelsbrunner H, Fu P, Sudhakar PV, Subramaniam S (1998) Proteins 33:1–17

    Article  CAS  Google Scholar 

  20. Liang J, Edelsbrunner H, Fu P, Sudhakar PV, Subramaniam S (1998) Proteins 33:18–29

    Article  CAS  Google Scholar 

  21. Baxter CA, Murray CW, Clark DE, Westhead DR, Eldridge MD (1998) Proteins 33:367–382

    Article  CAS  Google Scholar 

  22. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.D. and T.R.C. acknowledge the U.S. Department of Education for their support of CASCaM. These authors gratefully acknowledge the Chemical Computing Group for generously providing the Molecular Operating Environment (MOE) program. D. Z. and L. H. thank Southern Methodist University for generous financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Hua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cundari, T.R., Dinescu, A., Zhu, D. et al. A molecular modeling study on the enantioselectivity of aryl alkyl ketone reductions by a NADPH-dependent carbonyl reductase. J Mol Model 13, 685–690 (2007). https://doi.org/10.1007/s00894-007-0168-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-007-0168-9

Keywords

Navigation