Skip to main content

Advertisement

Log in

Quantitative structure-activity relationship by CoMFA for cyclic urea and nonpeptide-cyclic cyanoguanidine derivatives on wild type and mutant HIV-1 protease

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstact

3D-QSAR studies using the Comparative Molecular Field Analysis (CoMFA) methodology were conducted to predict the inhibition constants, Ki, and the inhibitor concentrations, IC90 of 127 symmetrical and unsymmetrical cyclic urea and cyclic cyanoguanidine derivatives containing different substituent groups such as: benzyl, isopropyl, 4-hydroxybenzyl, ketone, oxime, pyrazole, imidazole, triazole and having anti-HIV-1 protease activities. A significant cross-validated correlation coefficient (q2) of 0.63 and a fitted correlation coefficient r2 of 0.70 were obtained, indicating that the models can predict the anti-protease activity from poorly to highly active compounds reliably. The best predictions were obtained for: XV643 (predicted log 1/Ki=9.86), a 3,5-dimethoxy-benzyl cyclic urea derivate (molec60, predicted log 1/Ki=8.57) and a benzyl cyclic urea derivate (molec 61, predicted log 1/IC90=6.87). Using the CoMFA method, we also predicted the biological activity of 14 cyclic urea derivatives that inhibit the HIV-1 protease mutants V82A, V82I and V82F. The predicted biological activities of the: (i) XNO63 (inhibitory activity on the mutant HIV-1 PR V82A), (ii) SB570 (inhibiting the mutant HIV-1 PR V82I) and also (iii) XV652 (during the interaction with the mutant HIV-1 PR V82F) were in good agreement with the experimental values.

Figure Stereoview of the contour plots of the CoMFA steric and electrostatic fields. The favorable (indicated by blue polyhedra) and unfavorable (represented by red polyhedra) electrostatic areas and also the favorable (shown by green polyhedra) and unfavorable (shown by yellow polyhedra) steric areas formed around the most active molecule, 6a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wu J, Adomat MR, Tleis MJ, Leis J, Harrison RW, Weber I (1998) Biochemistry 37:4518–4526

    Google Scholar 

  2. Klabe RM, Bacheler LT, Ala PJ (1998) Biochemistry 37:8735–8742

    Google Scholar 

  3. Louis J, Wondrack ME, Kimmel RA, Wingfield T, Nashed TN (1999) J Biol Chem 274:23437–23442

    Google Scholar 

  4. Wlodawer A, Vondrasek J (1998) Annu Rev Biophys Struct 27:249–284

    Google Scholar 

  5. Vega S, Kang LW, Velazquez-Campoy A, Kiso Y, Amzel LM, Freire E (2004) Proteins 55:594–602

    Google Scholar 

  6. Konings FAJ, Zhong P, Agwara M, Agyingi L, Zekeng L, Achkar JM, Ewane L, Saa Z, Emmanuel A, Kinge T, Nyambi PN (2004) AIDS Res Hum Retroviruses 20:105–109

    Google Scholar 

  7. Oprea TI, Waller LC (1997) J Comp Chem 11:127–12

    Google Scholar 

  8. Nugiel A, Seitz J (1996) J Med Chem 39:2156–2169

    Google Scholar 

  9. Jadkav PK, Woerner FJ, Lam PYS, Hodge CN, Eyermnn CJ, Man HW, Daneker WF, Bacheler LT, Rayner MM, Meek JL, Erickson-Viitanen S, Jackson DA, Calabrese JC, Schadt M, Chong-Hwan C (1998) J Med Chem 41:1446–1455

    Google Scholar 

  10. Lin TH, Li HT, Tsai KC (2004) J Chem Inf Comput Sci 44:76–87

    Google Scholar 

  11. Senese CL, Hopfinger AJ (2003) J Chem Inf Comput Sci 43:2180–2193

    Google Scholar 

  12. Senese CL, Hopfinger AJ (2003) J Chem Inf Comput Sci 43:1297–1307

    Google Scholar 

  13. Kurup A, Mekapati SB, Garg R, Hansch C (2003) Curr Med Chem 10:1679–1688

    Google Scholar 

  14. Kiralj R, Ferreira MM (2003) J Mol Graph Model 21:435–448

    Google Scholar 

  15. Waller LC, Oprea TI, Giolitti A, Marshall RG (1993) J Med Chem 36:4152–4160

    Google Scholar 

  16. Schaal W, Karlsson A, Ahlsen G, Lindberg J, Andersson HO, Danielson UH, Classon B, Unge T, Samuelsson B, Hulten J, Hallberg A, Karlen A (2001) J Med Chem 44:155–169

    Google Scholar 

  17. Buolamwini JK, Assefa HJ (2002) J Med Chem 45:841–852

    Google Scholar 

  18. Nair AC, Jayatilleke P, Wang X, Miertus S, Welsh W (2002) J Med Chem 45:973–983

    Google Scholar 

  19. Huang X, Xu L, Luo X, Fan K, Ji R, Pei G, Chen K, Jiang H (2002) J Med Chem 45:333–343

    Google Scholar 

  20. Avram S, Bologa C, Banda M, Flonta ML (2001) Romanian J Biophys 11:11–24

    Google Scholar 

  21. Avram S, Svab I, Bologa C, Flonta ML (2003) J Cell Mol Med 7:287–296

    Google Scholar 

  22. Svab I, Avram S, Flonta ML (2002) Romanian J Biophys 11:119–132

    Google Scholar 

  23. Avram S, Movileanu L, Mihailescu D, Flonta ML (2002) J Cell Mol Med 6:251–260

    Google Scholar 

  24. Han Q, Chang CH, Li R, Ru Y, Jadhav PK, Lam PYS (1998) J Med Chem 41:2019–2028

    Google Scholar 

  25. Lam PY, Ru Y, Jadhav PK, Aldrich PE, DeLucca GV, Eyermann CJ, Chang CH, Emmett G, Holler ER, Daneker WF, Li L, Confalone PN, McHugh RJ, Han Q, Li R, Markwalder JA, Seitz SP, Sharpe TR, Bacheler LT, Rayner MM, Klabe RM, Shum L, Winslow DL, Kornhauser DM, Hodge CN (1996) J Med Chem 30:3514–3525

    Google Scholar 

  26. Hylton K-G, Main AD, McElwee-White L (2003) J Org Chem 68:1615–1617

    Google Scholar 

  27. Golub G, O’leary D (1989) SIAM Rev 31:50–102

    Google Scholar 

  28. Sybyl Theory Manual (1988) Tripos Associates Inc., 1699 South Hanley Road, St. Louis, MO 63144

  29. Sybyl Molecular Spreadsheet Manual (1988) Tripos Associates Inc., 1699 South Hanley Road, St. Louis, MO 63144

  30. Sybyl Tutorial Manual (1988) Tripos Associates Inc., 1699 South Hanley Road, St. Louis, MO 63144

  31. Sybyl Basic Ligand-Based Design Manual (1988) Tripos Associates Inc., 1699 South Hanley Road, St. Louis, MO 63144

  32. Cho JS, Tropsha A (1995) J Med Chem 38:1060–1066

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Andrei Petrescu, Biochemistry Institute, Bucharest, for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Speranta Avram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avram, S., Bologa, C. & Flonta, ML. Quantitative structure-activity relationship by CoMFA for cyclic urea and nonpeptide-cyclic cyanoguanidine derivatives on wild type and mutant HIV-1 protease. J Mol Model 11, 105–115 (2005). https://doi.org/10.1007/s00894-004-0226-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-004-0226-5

Keywords

Navigation