Skip to main content

Advertisement

Log in

Mechanistic insights into mode of actions of novel oligopeptidase B inhibitors for combating leishmaniasis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Leishmaniasis is an endemic disease caused by infection with one of several different species of protozoan parasite Leishmania. Oligopeptidase B (OPB) is a serine peptidase which plays a vital role in survival of the Leishmania parasite in the host (human) macrophage and help in attaining complete virulence. Inhibition of this peptidase would check the parasite growth inside the host organism and would thus control its infection. Lack of efficient and cheap drugs has led to an urgent need for development of new anti-leishmanial drugs and this study is a step forward in this direction. Using a structure-based approach we virtually screened a large naturally-occurring compound library against OPB and subjected two top scoring compounds with high binding affinity to molecular dynamics simulations which showed a stable RMSD trajectory. The first compound COP (Glide score: -13.183) was found stable for 15 ns at RMSD of 2.5 Å while the second compound TOA (Glide score: -10.308) was stable for 8 ns at RMSD of 1.5 Å. The screened compounds interacted with some crucial residues of OPB such as COP interacted with Ser577 and His697 (part of the catalytic triad), Tyr499 (responsible for substrate stability), Arg576 (conserved in protozoan family) and Arg664 (plays a role in stabilization of the bound inhibitor). TOA also interacted with Glu669 (conserved in protozoan family) in addition to the residues interacted with COA. These interactions are crucial for OPB inhibition. This study identified naturally-occurring compound leads against OPB with good binding affinity and low toxicity to human cells.

Mode of actions of novel Oligopeptidase B inhibitors before and after Molecular Dynamics Simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Herwaldt BL (1999) Leishmaniasis. Lancet 354(9185):1191–1199. doi:10.1016/S0140-6736(98)10178-2

    Article  CAS  Google Scholar 

  2. Handman E (2001) Leishmaniasis: current status of vaccine development. Clin Microbiol Rev 14(2):229–243. doi:10.1128/CMR.14.2.229-243.2001

    Article  CAS  Google Scholar 

  3. Coombs GH, Baxter J (1984) Inhibition of Leishmania amastigote growth by antipain and leupeptin. Ann Trop Med Parasitol 78(1):21–24

    CAS  Google Scholar 

  4. Singh N, Kumar M, Singh RK (2012) Leishmaniasis: current status of available drugs and new potential drug targets. Asian Pac J Trop Med 5(6):485–497. doi:10.1016/S1995-7645(12)60084-4 S1995-7645(12)60084-4

    Article  CAS  Google Scholar 

  5. Mishra BB, Singh RK, Srivastava A, Tripathi VJ, Tiwari VK (2009) Fighting against Leishmaniasis: search of alkaloids as future true potential anti-Leishmanial agents. Mini Rev Med Chem 9(1):107–123

    Article  CAS  Google Scholar 

  6. Frezard F, Demicheli C, Ribeiro RR (2009) Pentavalent antimonials: new perspectives for old drugs. Molecules 14(7):2317–2336. doi:10.3390/molecules1407231714072317

    Article  CAS  Google Scholar 

  7. Dorlo TP, van Thiel PP, Huitema AD, Keizer RJ, de Vries HJ, Beijnen JH, de Vries PJ (2008) Pharmacokinetics of miltefosine in Old World cutaneous leishmaniasis patients. Antimicrob Agents Chemother 52(8):2855–2860. doi:10.1128/AAC.00014-08 AAC.00014-08

    Article  CAS  Google Scholar 

  8. Alrajhi AA, Ibrahim EA, De Vol EB, Khairat M, Faris RM, Maguire JH (2002) Fluconazole for the treatment of cutaneous leishmaniasis caused by Leishmania major. N Engl J Med 346(12):891–895. doi:10.1056/NEJMoa011882 346/12/891

    Article  CAS  Google Scholar 

  9. Ekins S, Mestres J, Testa B (2007) In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br J Pharmacol 152(1):9–20. doi:10.1038/sj.bjp.0707305

    Article  CAS  Google Scholar 

  10. Kayser O, Kiderlen AF, Croft SL (2003) Natural products as antiparasitic drugs. Parasitol Res 90(Suppl 2):S55–S62. doi:10.1007/s00436-002-0768-3

    Article  Google Scholar 

  11. McKerrow JH, Caffrey C, Kelly B, Loke P, Sajid M (2006) Proteases in parasitic diseases. Annu Rev Pathol 1:497–536. doi:10.1146/annurev.pathol.1.110304.100151

    Article  CAS  Google Scholar 

  12. Sajid M, McKerrow JH (2002) Cysteine proteases of parasitic organisms. Mol Biochem Parasitol 120(1):1–21

    Article  CAS  Google Scholar 

  13. Guedes HL, Rezende JM, Fonseca MA, Salles CM, Rossi-Bergmann B, De-Simone SG (2007) Identification of serine proteases from Leishmania braziliensis. Z Naturforsch C 62(5–6):373–381

    CAS  Google Scholar 

  14. Silva-Lopez RE, Morgado-Diaz JA, Chavez MA, Giovanni-De-Simone S (2007) Effects of serine protease inhibitors on viability and morphology of Leishmania (Leishmania) amazonensis promastigotes. Parasitol Res 101(6):1627–1635. doi:10.1007/s00436-007-0706-5

    Article  CAS  Google Scholar 

  15. Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, Sisk E, Rajandream MA, Adlem E, Aert R, Anupama A, Apostolou Z, Attipoe P, Bason N, Bauser C, Beck A, Beverley SM, Bianchettin G, Borzym K, Bothe G, Bruschi CV, Collins M, Cadag E, Ciarloni L, Clayton C, Coulson RM, Cronin A, Cruz AK, Davies RM, De Gaudenzi J, Dobson DE, Duesterhoeft A, Fazelina G, Fosker N, Frasch AC, Fraser A, Fuchs M, Gabel C, Goble A, Goffeau A, Harris D, Hertz-Fowler C, Hilbert H, Horn D, Huang Y, Klages S, Knights A, Kube M, Larke N, Litvin L, Lord A, Louie T, Marra M, Masuy D, Matthews K, Michaeli S, Mottram JC, Muller-Auer S, Munden H, Nelson S, Norbertczak H, Oliver K, O’Neil S, Pentony M, Pohl TM, Price C, Purnelle B, Quail MA, Rabbinowitsch E, Reinhardt R, Rieger M, Rinta J, Robben J, Robertson L, Ruiz JC, Rutter S, Saunders D, Schafer M, Schein J, Schwartz DC, Seeger K, Seyler A, Sharp S, Shin H, Sivam D, Squares R, Squares S, Tosato V, Vogt C, Volckaert G, Wambutt R, Warren T, Wedler H, Woodward J, Zhou S, Zimmermann W, Smith DF, Blackwell JM, Stuart KD, Barrell B, Myler PJ (2005) The genome of the kinetoplastid parasite, Leishmania major. Science 309(5733):436–442. doi:10.1126/science.1112680

    Article  Google Scholar 

  16. Rawlings ND, Morton FR, Kok CY, Kong J, Barrett AJ (2008) MEROPS: the peptidase database. Nucleic Acids Res 36(Database issue):D320–D325. doi:10.1093/nar/gkm954

    CAS  Google Scholar 

  17. Swenerton RK, Zhang S, Sajid M, Medzihradszky KF, Craik CS, Kelly BL, McKerrow JH (2011) The oligopeptidase B of Leishmania regulates parasite enolase and immune evasion. J Biol Chem 286(1):429–440. doi:10.1074/jbc.M110.138313 M110.138313

    Article  CAS  Google Scholar 

  18. Rea D, Fulop V (2006) Structure-function properties of prolyl oligopeptidase family enzymes. Cell Biochem Biophys 44(3):349–365. doi:10.1385/CBB:44:3:349

    Article  CAS  Google Scholar 

  19. Munday JC, McLuskey K, Brown E, Coombs GH, Mottram JC (2011) Oligopeptidase B deficient mutants of Leishmania major. Mol Biochem Parasitol 175(1):49–57. doi:10.1016/j.molbiopara.2010.09.003 S0166-6851(10)00234-3

    Article  CAS  Google Scholar 

  20. McLuskey K, Paterson NG, Bland ND, Isaacs NW, Mottram JC (2010) Crystal structure of Leishmania major oligopeptidase B gives insight into the enzymatic properties of a trypanosomatid virulence factor. J Biol Chem 285(50):39249–39259. doi:10.1074/jbc.M110.156679 M110.156679

    Article  CAS  Google Scholar 

  21. Lite WV (1998) ViewerLite Version 5.0. Accelrys, San Diego

  22. Schrödinger M (2009) Schrödinger LLC, New York. NY

  23. Irwin JJ, Shoichet BK (2005) ZINC–a free database of commercially available compounds for virtual screening. J Chem Inf Model 45(1):177–182. doi:10.1021/ci049714+

    Article  CAS  Google Scholar 

  24. Schrödinger (2009) Schrödinger suite. LLC, New York

  25. Laurie AT, Jackson RM (2005) Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21(9):1908–1916. doi:10.1093/bioinformatics/bti315

    Article  CAS  Google Scholar 

  26. Hendlich M, Rippmann F, Barnickel G (1997) LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. J Mol Graph Model 15(6):359–363, 389

    Article  CAS  Google Scholar 

  27. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749. doi:10.1021/jm0306430

    Article  CAS  Google Scholar 

  28. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47(7):1750–1759. doi:10.1021/jm030644s

    Article  CAS  Google Scholar 

  29. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718. doi:10.1002/jcc.20291

    Article  CAS  Google Scholar 

  30. van der Spoel D, van Maaren PJ, Caleman C (2012) GROMACS molecule & liquid database. Bioinformatics 28(5):752–753. doi:10.1093/bioinformatics/bts020

    Article  CAS  Google Scholar 

  31. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78(8):1950–1958. doi:10.1002/prot.22711

    CAS  Google Scholar 

  32. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25(2):247–260. doi:10.1016/j.jmgm.2005.12.005

    Article  CAS  Google Scholar 

  33. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174. doi:10.1002/jcc.20035

    Article  CAS  Google Scholar 

  34. Sousa da Silva AW, Vranken WF (2012) ACPYPE—AnteChamber PYthon Parser interfacE. BMC Res Notes 5:367. doi:10.1186/1756-0500-5-367 1756-0500-5-367

    Article  Google Scholar 

  35. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):10

    Article  Google Scholar 

  36. Parrinello M, Rahman A (1981) Polymorphic transitions in single-crystals—a new molecular-dynamics method. J Appl Phys 52(12):9

    Article  Google Scholar 

  37. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh ewald method. J Chem Phys 103(19):17

    Article  Google Scholar 

  38. Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Lee W, Tang Y (2012) admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model 52(11):3099–3105

    Article  CAS  Google Scholar 

Download references

Acknowledgments

AG is thankful to Jawaharlal Nehru University for usage of all computational facilities. AG is grateful to University Grants Commission, India for the Faculty Recharge position.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhinav Grover.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goyal, S., Grover, S., Dhanjal, J.K. et al. Mechanistic insights into mode of actions of novel oligopeptidase B inhibitors for combating leishmaniasis. J Mol Model 20, 2099 (2014). https://doi.org/10.1007/s00894-014-2099-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2099-6

Keywords

Navigation