Skip to main content
Log in

Characterization of peroxo reaction intermediates in the water oxidation process on hematite surfaces

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We use density functional theory-based calculations to study structural, electronic, and magnetic properties of two key reaction intermediates on a hematite, \(\alpha \)-Fe2O3, photoanode during the solar-driven water splitting reaction. Both intermediates contain an oxygen atom bonded to a surface iron atom. In one case, the adsorbed oxygen also forms a peroxo bond with a lattice oxygen from hematite; in the second case no such bond is formed. Both configurations are energetically equivalent and are related to the overpotential-determining step in the oxygen evolution reaction. The calculated reaction path for the breaking of the peroxo bond shows a barrier of about 0.86 eV for the transformation between the two intermediates. We explain this high barrier with the drastically different electronic and magnetic structure, which we also analyze using maximally localized Wannier functions. Photo-generated electron holes are shown to localize preferentially close to the reaction center at the surface in both configurations. In the case of the oxo species, this localization favors subsequent electron transfer steps during the oxygen evolution cycle. In the case of the peroxo configuration, this fact together with the high barrier for breaking the oxygen–oxygen bond indicates a possible loss mechanism due to hole trapping.

Calculated spin density at a hematite surface with peroxo intermediate

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Grave DA, Yatom N, Ellis DS, Toroker MC, Rothschild A (2018) The ”Rust” Challenge: On the Correlations between Electronic Structure, Excited State Dynamics, and Photoelectrochemical Performance of Hematite Photoanodes for Solar Water Splitting. Advanced Materials, pp 1706577

  2. Sivula K, Formal FL, Grȧtzel M (2011) Solar water splitting: progress using hematite (α-Fe(2) O(3)) photoelectrodes. ChemSusChem 4(4):432–49

    Article  CAS  Google Scholar 

  3. Barroso M, Pendlebury SR, Cowan AJ, Durrant JR (2013) Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes. Chem Sci 4(7):2724

    Article  CAS  Google Scholar 

  4. Formal FL, Pastor E, Tilley SD, Mesa CA, Pendlebury SR, Grȧtzel M, Durrant JR (2015) Rate Law Analysis of Water Oxidation on a Hematite Surface. Journal of the American Chemical Society

  5. Zhou Z, Liu J, Long R, Li L, Guo L, Prezhdo OV (2017) Control of charge carriers trapping and relaxation in hematite by oxygen vacancy charge: ab initio non-adiabatic molecular dynamics. J Am Chem Soc 139 (19):6707–6717

    Article  CAS  Google Scholar 

  6. Zhang M, Luo W, Li Z, Yu T, Zou Z (2010) Improved photoelectrochemical responses of Si and Ti codoped \(\alpha \)-Fe2O3 photoanode films. Appl Phys Lett 97(4):042105

    Article  Google Scholar 

  7. Meng XY, Qin GW, Li S, Wen XH, Ren YP, Pei WL, Zuo L (2011) Enhanced photoelectrochemical activity for Cu and Ti-doped hematite: the first principles calculations. Appl Phys Lett 98(11):112104

    Article  Google Scholar 

  8. Liao P, Keith JA, Carter EA (2012) Water oxidation on pure and doped hematite (0001) surfaces: prediction of Co and Ni as effective dopants for electrocatalysis. J Am Chem Soc 134(32):13296–309

    Article  CAS  Google Scholar 

  9. Liao P, Carter EA (2012) Hole transport in pure and doped hematite. J Appl Phys 112(1):013701

    Article  Google Scholar 

  10. Lin Y, Sa Z, Sheehan SW, Wang D (2011) Nanonet-based hematite heteronanostructures for efficient solar water splitting. J Am Chem Soc 133(8):2398–401

    Article  CAS  Google Scholar 

  11. Malara F, Fabbri F, Marelli M, Naldoni A (2016) Controlling the Surface Energetics and Kinetics of Hematite Photoanodes Through Few Atomic Layers of NiO x. ACS Catalysis, pp 3619–3628

  12. Kiejna A, Pabisiak T (2012) Surface properties of clean and Au or Pd covered hematite (α-Fe(2)O(3)) (0001). J Phys Condens Matter: Instit Phys J 24(9):095003

    Article  Google Scholar 

  13. Seriani N (2017) Ab initio simulations of water splitting on hematite. J Phys: Condens Matter 29(46):463002

    Google Scholar 

  14. Trainor TP, Chaka AM, Eng PJ, Newville M, Waychunas GA, Catalano JG, Brown GE (2004) Structure and reactivity of the hydrated hematite (0001) surface. Surf Sci 573(2):204–224

    Article  CAS  Google Scholar 

  15. Hellman A, Pala RGS (2011) First-principles study of photoinduced water-splitting on Fe2O3. J Phys Chem C 115(26):12901–12907

    Article  CAS  Google Scholar 

  16. Nguyen M-T, Seriani N, Piccinin S, Gebauer R (2014) Photo-driven oxidation of water on \(\alpha \)-Fe2O3 surfaces: an ab initio study. J Chem Phys 140(6):064703

    Article  Google Scholar 

  17. Ulman K, Nguyen M-T, Seriani N, Piccinin S, Gebauer R (2017) A unified picture of water oxidation on bare and gallium oxide-covered hematite from density functional theory. ACS Catal 7(3):1793–1804

    Article  CAS  Google Scholar 

  18. Nguyen M-T, Seriani N, Gebauer R (2013) Water adsorption and dissociation on \(\alpha \)-Fe2O3(0001): PBE+U calculations. J Chem Phys 138(19):194709

    Article  Google Scholar 

  19. Nguyen M-T, Gebauer R (2014) Graphene supported on hematite surfaces a density functional study. J Phys Chem C 118(16):8455–8461

    Article  CAS  Google Scholar 

  20. Nguyen M-T, Seriani N, Gebauer R (2014) Defective \(\alpha \)-Fe2 O3 (0001): an ab initio study. Chemphyschem: Eur J Chem Phys Phys Chem 15(14):2930–5

    Article  CAS  Google Scholar 

  21. Nguyen M-T, Piccinin S, Seriani N, Gebauer R (2015) Photo-oxidation Of water on defective hematite(0001). ACS Catal 5(2):715–721

    Article  CAS  Google Scholar 

  22. Nguyen M-T, Camellone MF, Gebauer R (2015) On the electronic, structural, and thermodynamic properties of Au supported on \(\alpha \)-Fe2O3 surfaces and their interaction with CO. J Chem Phys 143(3):034704

    Article  Google Scholar 

  23. Nguyen M-T, Seriani N, Gebauer R (2015) Nitrogen electrochemically reduced to ammonia with hematite: density functional insights. Phys Chem Chem Phys: PCCP 17(22):14317–22

    Article  CAS  Google Scholar 

  24. Ulman K, Nguyen M-T, Seriani N, Gebauer R (2016) Passivation of surface states of α-Fe2O3(0001) surface by deposition of Ga2O3 overlayers: a density functional theory study

  25. Nakamura R, Nakato Y (2004) Primary intermediates of oxygen photoevolution reaction on TiO2 (rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. J Am Chem Soc 126(4):1290–8

    Article  CAS  Google Scholar 

  26. Zhang M, de Respinis M, Frei H (2014) Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat Chem 6(4):362–367

  27. Zandi O, Hamann TW (2016) Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy. Nat Chem 8(8):778–783

    Article  CAS  Google Scholar 

  28. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864–B871

    Article  Google Scholar 

  29. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138

    Article  Google Scholar 

  30. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter: Inst Phys J 21(39):395502

  31. Giannozzi P, Andreussi O, Brumme T, Bunau O, Buongiorno Nardelli M, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Dal Corso A, de Gironcoli S, Delugas P, DiStasio RA, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko H-Y, Kokalj A, Küçükbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen NL, Nguyen H-V, Otero-de-la Roza A, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen AP, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, Baroni S (2017) Advanced capabilities for materials modelling with Quantum ESPRESSO. J Phys: Condens Matter 29(46):465901

  32. Mostofi AA, Yates JR, Pizzi G, Lee Y-S, Souza I, Vanderbilt D, Marzari N (2014) An updated version of Wannier90. A tool for obtaining maximally-localised Wannier functions. Comput Phys Commun 185(8):2309–2310

    Article  CAS  Google Scholar 

  33. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  Google Scholar 

  34. Cococcioni M, de Gironcoli S (2005) Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys Rev B 71(3):035105

  35. Anisimov VI, Zaanen J, Andersen OK (1991) Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B 44(3):943–954

    Article  CAS  Google Scholar 

  36. Ansari N, Ulman K, Camellone MF, Seriani N, Gebauer R, Piccinin S (2017) Hole localization in Fe2O3 from density functional theory and wave-function-based methods. Phys Rev Mater 1(3):035404

    Article  Google Scholar 

  37. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41(11):7892–7895

    Article  CAS  Google Scholar 

  38. Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904

    Article  CAS  Google Scholar 

  39. Marzari N, Vanderbilt D (1997) Maximally localized generalized Wannier functions for composite energy bands. Phys Rev B 56(20):12847–12865

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L. Tchibota Poaty is greatful to the OFID Postgraduate Fellowship Programme at ICTP and to the ICTP-IAEA Sandwich Training Educational Programme under which this work has been performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Gebauer.

Additional information

This paper belongs to Topical Collection International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poaty, L.T., Ulman, K., Seriani, N. et al. Characterization of peroxo reaction intermediates in the water oxidation process on hematite surfaces. J Mol Model 24, 284 (2018). https://doi.org/10.1007/s00894-018-3815-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3815-4

Keywords

Navigation