Skip to main content
Log in

Influence of impurities on the etching of NaCl crystals

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of CdCl2, CuCl2·2H2O, MnCl2·4H2O and FeCl3·6H2O impurities and undersaturation on the rates of macroscopic dissolution,v p, lateral etching away from a dislocation line,v t, and normal etching along the dislocation line,v n, and on the surface micromorphology of the {100} face of NaCl single crystals in water, methanol and 96% ethanol is investigated. The dependence of etch rates on impurity concentration,c i, showed that the addition of a salt to the solvent always leads to a decrease inv p, which attains a minimum value after a particular value ofc i. The concentration dependence ofv t andv n is relatively complex, but often both decrease or increase simultaneously. A change in etch-pit morphology is caused by increasing the concentrations of all additives in ethanol and methanol. The dependence of etch rates on the undersaturation of methanol and methanol containing 10−3 M CdCl2 showed that dislocation etch pits are formed only for undersaturations greater than 0.02 and 0.06, respectively. These results as well as the roughening of etched surfaces at low impurity concentrations, the formation of terraced etch pits and the difference between etch pits at aged and fresh dislocations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Gilman, W. G. Johnston andG. W. Sears,J. Appl. Phys. 29 (1958) 747.

    Google Scholar 

  2. M. B. Ives andJ. P. Hirth,J. Chem. Phys. 33 (1960) 517.

    Google Scholar 

  3. S. Mendelson,J. Appl. Phys. 32 (1961) 1579.

    Google Scholar 

  4. V. N. Rozhanskii, E. V. Parvova, V. M. Stepanova andA. A. Predvoditelev,Kristallografiya 6 (1961) 704.

    Google Scholar 

  5. N. F. Kostin, S. V. Lubenets andK. S. Aleksandrov,ibid. 6 (1961) 737.

    Google Scholar 

  6. A. A. Urusovskaya,ibid. 8 (1963) 75.

    Google Scholar 

  7. V. Hari Babu andK. G. Bansigir,J. Phys. Soc. Jpn. 23 (1967) 860.

    Google Scholar 

  8. Idem,2 (1968) 9.

    Google Scholar 

  9. Idem 30 (1968) 1015.

    Google Scholar 

  10. Idem 40 (1969) 827.

    Google Scholar 

  11. E. Yu. Gutmanas andE. M. Nadgornyi,Kristallografiya 13 (1968) 114.

    Google Scholar 

  12. K. Sangwal andA. A. Urusovskaya,J. Cryst. Growth 41 (1977) 216.

    Google Scholar 

  13. E. M. Nadgornyi andA. V. Stepanov,Fiz. Tverd. Tela 5 (1963) 998.

    Google Scholar 

  14. G. K. Baranova andE. M. Nadgornyi,Kristallografiya 17 (1972) 875.

    Google Scholar 

  15. Idem, ibid. 20 (1975) 446.

    Google Scholar 

  16. G. K. Baranova andE. M. Nadgornyi,ibid. 16 (1971) 596.

    Google Scholar 

  17. V. Hari Babu andK. G. Bansigir,Ind. J. Pure Appl. Phys. 8 (1970) 748.

    Google Scholar 

  18. B. Simon,J. Cryst. Growth 52 (1981) 789.

    Google Scholar 

  19. M. A. Van Damme-Van Weele, in “Adsorption et Croissance Cristalline” (CNRS, Paris, 1965) p. 433.

    Google Scholar 

  20. H. E. Buckley, “Crystal Growth” (Wiley, New York, 1951).

    Google Scholar 

  21. J. W. Mullin, “Crystallization”, 2nd edn. (Butter-worths, London, 1972).

    Google Scholar 

  22. K. Sangwal andA. A. Urusovskaya,Progr. Cryst. Growth Character. in press.

  23. S. N. Andreev andO. V. Sapozhnikova,Zh. Neorg. Khimii 10 (1965) 2538.

    Google Scholar 

  24. Idem, ibid. 13 (1968) 1548.

    Google Scholar 

  25. I. I. Antipova-Karataeva, Yu. A. Zolotov andI. V. Seryakova,ibid. 9 (1964) 1712.

    Google Scholar 

  26. R. Voszka, I. Tarjan, L. Berkes andJ. Krajsovszy,Krist. Tech. 1 (1966) 423.

    Google Scholar 

  27. K. Sangwal andS. K. Arora,J. Mater. Sci. 13 (1978) 1977.

    Google Scholar 

  28. K. Sangwal,ibid. 17 (1982) 3598.

    Google Scholar 

  29. R. J. Davey andJ. W. Mullin,J. Cryst. Growth 26 (1974) 45.

    Google Scholar 

  30. Ya. Gerasimov, V. Dreving, E. Eremin, A. Kiselev, V. Lebedev, G. Panchenkov andA. Shlygin, “Physical Chemistry” Vol. 2 (Mir, Moscow, 1974).

    Google Scholar 

  31. J. Ościk, “Adsorption” (PWN-Polish Scientific Publishers, Warsaw, 1982).

    Google Scholar 

  32. A. A. Chernov,Uspekhi Fizicheskikh Nauk 73 (1961) 277.

    Google Scholar 

  33. Idem, in “Adsorption et Croissance Cristalline” (CNRS, Paris, 1965) p. 265.

    Google Scholar 

  34. I. Gajewska, S. Pietras, J. Rudzińska andA. Schellenberg (eds.), “Poradnik Fizykochemiczny” (Naukowo-Techniczne Press, Warsaw, 1974).

    Google Scholar 

  35. B. Mutaftchiev, H. Chajes andR. Gindt, in “Adsorption et Croissance Crystalline” (CNRS, Paris, 1965) p. 419.

    Google Scholar 

  36. W. Schaarwächter,Phys. Status Solidi 12 (1965) 865.

    Google Scholar 

  37. R. Kern, in “Rost Kristallov” Vol. 8, Part 2 (Nauka, Moscow, 1968) p. 5.

    Google Scholar 

  38. P. Hartman, in “Adsorption et Croissance Cristalline” (CNRS, Paris, 1965) p. 477.

    Google Scholar 

  39. Idem, in “Crystal Growth: an Introduction”, edited by P. Hartman (North-Holland, Amsterdam, 1973) p. 363.

    Google Scholar 

  40. F. C. Frank, in “Adsorption et Croissance Cristalline” (CNRS, Paris, 1965) p. 513.

    Google Scholar 

  41. R. J. Davey, in “Industrial Crystallization 78” edited by E. J. de Jong and S. J. Jančić (North-Holland, Amsterdam, 1979) p. 169.

    Google Scholar 

  42. G. Bliznakov andE. Kirkova,Krist. Tech. 4 (1969) 331; also see their other works cited therein.

    Google Scholar 

  43. G. Bliznakov,Fortschr. Mineral. 36 (1958) 149.

    Google Scholar 

  44. N. Cabrera andM. M. Levine,Phil. Mag. 1 (1956) 450.

    Google Scholar 

  45. N. Cabrera,J. Chim. Phys. 53 (1956) 675.

    Google Scholar 

  46. Idem, in “The Surface Chemistry of Metals and Semiconductors”, edited by H. C. Gatos (Wiley. New York, 1960) p. 71.

    Google Scholar 

  47. B. Van Der Hoek, J. P. Van Der Eerden andP. Bennema,J. Cryst. Growth 56 (1982) 621.

    Google Scholar 

  48. K. H. Hellwege andA. M. Hellwege (eds) “Numerical Data and Functional Relationships in Science and Technology” Group III, Vol. 11 (Springer-Verlag, Berlin, Heidelberg, New York, 1979).

    Google Scholar 

  49. J. J. Gilman,J. Appl. Phys. 31 (1960) 2208.

    Google Scholar 

  50. G. W. Sears,J. Chem. Phys. 32 (1960) 1317.

    Google Scholar 

  51. J. W. Faust, Jr, in “The Surface Chemistry of Metals and Semiconductors”, edited by H. C. Gatos (Wiley, New York, 1960) p. 173.

    Google Scholar 

  52. J. J. Gilman,ibid.in “) pp. 172–3.

    Google Scholar 

  53. N. Cabrera andD. A. Vermilyea, in “Growth and Perfection of Crystals”, edited by R. H. Doremus, B. W. Roberts and D. Turnbull (Wiley, New York, 1958) p. 393.

    Google Scholar 

  54. J. Bloem andL. J. Giling, in “Current Topics in Materials Science” Vol. 1 edited by E. Kaldis (North-Holland, Amsterdam, 1978) p. 147.

    Google Scholar 

  55. G. Zaniewska, unpublished results (1983).

  56. P. Bennema andJ. P. Van Der Eerden,J. Cryst. Growth 42 (1977) 201.

    Google Scholar 

  57. G. H. Gilmer andP. Bennema,ibid. 13/14 (1972) 148.

    Google Scholar 

  58. P. Bennema andG. H. Gilmer, in “Crystal Growth: an Introduction” edited by P. Hartman North-Holland, Amsterdam, 1973) p. 263.

    Google Scholar 

  59. A. R. Lang,J. Appl. Phys. 28 (1957) 497.

    Google Scholar 

  60. W. G. Johnston, in “Progress in Ceramic Science” Vol. 2, edited by J. E. Burke (Pergamon Press, Oxford, 1962) p. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sangwal, K., Zaniewska, G. Influence of impurities on the etching of NaCl crystals. J Mater Sci 19, 1131–1144 (1984). https://doi.org/10.1007/BF01120022

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01120022

Keywords

Navigation