Skip to main content
Log in

Thermal and mechanical properties of the açaí fiber/natural rubber composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The açaí fruit industrial processing produces a large amount of waste, mainly seeds and fibers, which is a serious environmental and public health problem. The objective of this work was to use these fibers to obtain composites with natural rubber from different clones. The effect of the addition of açaí fibers and the type of clone were investigated using thermogravimetric analysis (TGA) under inert and oxidative atmospheres, differential scanning calorimetry (DSC), water sorption, and mechanical properties. The açaí fibers exhibited a thermal behavior comparable to other natural fibers industrially used in polymeric composites. The addition of the fibers did not influence the thermal stability of the composites. There was no significant effect of the type of clone and the addition of the fiber on the glass transition temperature, which was approximately −59 °C for all samples. Water sorption behavior of the compounds and of the composites was similar to that of the other materials with natural rubber that are reported in the literature. The promising performance of the composites with açaí fibers opens a new area of use for such fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mokoena MA, Djokovic V, Luyt AS (2004) J Mater Sci 39(10):3403. doi:https://doi.org/10.1023/B:JMSC.0000026943.47803.0b

    Article  CAS  Google Scholar 

  2. Mishra S, Mohanty AK, Drzal LT, Misra M, Hinrichsen G (2004) Macromol Mater Eng 289(11):955. doi:https://doi.org/10.1002/mame.200400132

    Article  CAS  Google Scholar 

  3. Thwe MM, Liao K (2003) J Mater Sci 38(2):363. doi:https://doi.org/10.1023/A:1021130019435

    Article  CAS  Google Scholar 

  4. Bledzki AK, Gassan J (1999) Prog Polym Sci 24(2):221. doi:https://doi.org/10.1016/S0079-6700(98)00018-5

    Article  CAS  Google Scholar 

  5. Bisanda ETN, Ansell MP (1992) J Mater Sci 27(6):1690. doi:https://doi.org/10.1007/BF00542934

    Article  CAS  Google Scholar 

  6. da Costa HM, Visconde LLY, Nunes RCR, Furtado CRG (2002) J Appl Polym Sci 83(11):2331. doi:https://doi.org/10.1002/app.10125

    Article  Google Scholar 

  7. Varghese S, Kuriakose B, Thomas S, Kosh AT (1994) J Adhes Sci Technol 8(3):235. doi:https://doi.org/10.1163/156856194X01086

    Article  CAS  Google Scholar 

  8. Murty VM, De SK (1982) J Appl Polym Sci 27(12):4611. doi:https://doi.org/10.1002/app.1982.070271208

    Article  CAS  Google Scholar 

  9. Geethamma VG, Mathew KT, Lakshminarayanan R, Thomas S (1998) Polymer (Guildf) 39(6–7):1483. doi:https://doi.org/10.1016/S0032-3861(97)00422-9

    Article  CAS  Google Scholar 

  10. Kumar RP, Geethakumari Amma ML, Thomas S (1995) J Appl Polym Sci 58(3):597. doi:https://doi.org/10.1002/app.1995.070580315

    Article  CAS  Google Scholar 

  11. Gallori S, Bilia AR, Bergonzi MC, Barbosa WLR, Vincieri FF (2004) Chromatographia 59(11–12):739. doi:https://doi.org/10.1365/s10337-004-0305-x

    CAS  Google Scholar 

  12. Del Pozo-Insfran D, Brenes CH, Talcott ST (2004) J Agric Food Chem 52(6):1539. doi:https://doi.org/10.1021/jf035189n

    Article  Google Scholar 

  13. Muñiz-Miret N, Vamos R, Hiraoka M, Montagnini F, Mendelsohn RO (1996) For Ecol Manage 87(1–3):163. doi:https://doi.org/10.1016/S0378-1127(96)03825-X

    Article  Google Scholar 

  14. Pacheco-Palencia LA, Hawken P, Talcott ST (2007) Food Res Int 40(5):620. doi:https://doi.org/10.1016/j.foodres.2006.11.006

    Article  CAS  Google Scholar 

  15. Pacheco-Palencia LA, Hawken P, Talcott ST (2007) Food Chem 105(1):28. doi:https://doi.org/10.1016/j.foodchem.2007.03.027

    Article  CAS  Google Scholar 

  16. Schauss AG, Wu X, Prior RL, Ou B, Patel D, Huang D et al (2006) J Agric Food Chem 54(22):8598. doi:https://doi.org/10.1021/jf060976g

    Article  CAS  Google Scholar 

  17. Coïsson JD, Travaglia F, Piana G, Capasso M, Arlorio M (2005) Food Res Int 38(8–9):893. doi:https://doi.org/10.1016/j.foodres.2005.03.009

    Article  Google Scholar 

  18. Rodrigues RB, Lichtenthãler R, Zimmermann BF, Papagiannopoulos M, Fabricius H, Marx F (2006) J Agric Food Chem 54(12):4162. doi:https://doi.org/10.1021/jf058169p

    Article  CAS  Google Scholar 

  19. Rogez H (2000) Açaí: Preparação, composição e melhoramento da conservação, 1st edn. EDUFPA, Brazil

    Google Scholar 

  20. Gonçalves PS, Silva MA, Gouvêa LRL, Scaloppi EJ, Scaloppi EJ Jr (2006) Sci Agric 63(3):246. doi:https://doi.org/10.1590/S0103-90162006000300006

    Article  Google Scholar 

  21. Menon ARR, Pillai CKS, Nando GB (1996) Polym Degrad Stabil 52(3):265. doi:https://doi.org/10.1016/0141-3910(96)00007-9

    Article  CAS  Google Scholar 

  22. Mwaikambo LY, Ansell MP (1999) Angew Makromolekulare Chem 272(1):108. doi :10.1002/(SICI)1522-9505(19991201)272:1<108::AID-APMC108>3.0.CO;2-9

    Article  CAS  Google Scholar 

  23. Chand N, Sood S, Singh DK, Rohatgi PK (1987) J Therm Anal 32(2):595. doi:https://doi.org/10.1007/BF01912712

    Article  Google Scholar 

  24. Martins MA, Joekes I (2003) J Appl Polym Sci 89(9):2507. doi:https://doi.org/10.1002/app.12285

    Article  CAS  Google Scholar 

  25. Varma DS, Varma IK (1986) Thermochim Acta 108:199. doi:https://doi.org/10.1016/0040-6031(86)85092-4

    Article  CAS  Google Scholar 

  26. Silva GG, de Souza DA, Machado JC, Hourston DJ (2000) J Appl Polym Sci 76(7):1197. doi :10.1002/(SICI)1097-4628(20000516)76:7<1197::AID-APP23>3.0.CO;2-G

    Article  CAS  Google Scholar 

  27. Mwaikambo LY, Ansell MP (2002) J Appl Polym Sci 84(12):2222. doi:https://doi.org/10.1002/app.10460

    Article  CAS  Google Scholar 

  28. Li SD, Yu HP, Peng Z, Zhu CS, Li PS (2000) J Appl Polym Sci 75(11):1339. doi :10.1002/(SICI)1097-4628(20000314)75:11<1339::AID-APP3>3.0.CO;2-0

    Article  CAS  Google Scholar 

  29. de Medeiros ES, Moreno RMB, Ferreira FC, Alves N, Job AE, Gonçalves PS et al (2003) Prog Rubber Plast Recycl Technol 19(4):189

    Article  Google Scholar 

  30. Sircar AK (1997) J Therm Anal 49(1):293. doi:https://doi.org/10.1007/BF01987450

    Article  CAS  Google Scholar 

  31. Brazier DW (1980) Rubber Chem Technol 53(3):437

    Article  CAS  Google Scholar 

  32. Sircar AK, Galaska ML, Rodrigues S, Chartoff RP (1999) Rubber Chem Technol 72(3):513

    Article  CAS  Google Scholar 

  33. Sreekala MS, Kumaran MG, Thomas S (2002) Comp Part A Appl Sci Manuf 33(6):763. doi:https://doi.org/10.1016/S1359-835X(02)00032-5

    Article  Google Scholar 

  34. Geethamma VG, Thomas S (2005) Polym Comp 26(2):136. doi:https://doi.org/10.1002/pc.20086

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank FAPESP and CNPq for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. H. C. Mattoso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, M.A., Pessoa, J.D.C., Gonçalves, P.S. et al. Thermal and mechanical properties of the açaí fiber/natural rubber composites. J Mater Sci 43, 6531–6538 (2008). https://doi.org/10.1007/s10853-008-2842-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2842-4

Keywords

Navigation