Skip to main content

Advertisement

Log in

Vancomycin release from bioresorbable calcium phosphate–polymer composites with high ceramic volume fractions

  • IMEC 2009
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Bioresorbable calcium phosphate–polymer composite implants are a desirable alternative to the traditional metal bone-healing devices. Incorporation of antimicrobial drugs into the composite material and their sustained delivery may dramatically reduce the risk of implant infections. The paper reports the fabrication of drug-incorporated bioresorbable CaP–polymer nanocomposites that can be used for fracture fixation devices and at the same time function as local delivery systems. Vancomycin was incorporated into β-tricalcium phosphate (β-TCP)- and biphasic CaP (BCP)-based composites containing ≤30 vol.% polycaprolactone (PCL) or polylactic acid (PLA), during their high pressure consolidation at 2.5 GPa and room temperature. The antibiotic release was studied in Tris buffer solution at 37 °C. Up to 5 wt% vancomycin could be included without compromising material’s integrity upon immersion into Tris solution. Vancomycin release profile was found to depend on the specific surface area of the test specimens and on the composite porosity. β-TCP–30 vol.% PLA composites were found to have the best combination of compression strength and drug release pattern. Complete drug release was accompanied by only negligible material dissolution suggesting a diffusion mechanism of release. In the context of bone-healing applications, such a release-dissolution pattern will allow local prophylaxis against implant-related infection at the early stages after implantation followed by a much more slow dissolution of the load-carrying device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kontakis GM, Pagkalos JE, Tosounidis ThI, Melissas J, Katonis P (2007) Acta Orthop Belg 73:159

    PubMed  Google Scholar 

  2. Shikinami Y, Okuno M (1999) Biomaterials 20:59

    Article  Google Scholar 

  3. Pietrzak WS, Sarver D, Verstynen M (1996) Bone 19:109S

    Article  CAS  PubMed  Google Scholar 

  4. Middleton JC, Tipton AJ (2000) Biomaterials 21:2335

    Article  CAS  PubMed  Google Scholar 

  5. Ignjatovic N, Tomic S, Dakic M, Miljkovic M, Plavsic M, Uskokovic D (1999) Biomaterials 20:809

    Article  CAS  PubMed  Google Scholar 

  6. Kasuga T, Ota Y, Nogami M, Abe Y (2001) Biomaterials 22:19

    Article  CAS  PubMed  Google Scholar 

  7. Kasuga T, Ozaki ShY, Hayakawa T, Nogami M, Abe Y (1999) J Mater Sci Lett 18:2021

    Article  CAS  Google Scholar 

  8. Gay S, Arostegui S, Lemaitre J (2009) Mater Sci Eng C 29:172

    Article  CAS  Google Scholar 

  9. Calandrelli L, Immirzi BA, Malinconico M (2004) J Bioact Compat Polym 19:301

    Article  CAS  Google Scholar 

  10. Bernstein M (2006) Development of bioresorbable load bearing nanostructured ceramic–polymer composites for bone graft substitutes. M.Sc. Thesis, Technion, Haifa, Israel

  11. Makarov C, Gotman I, Gutmanas EY (2007) Single-step synthesis of biodegradable calcium phosphate-PCL or PLGA composite nanopowders and their room temperature consolidation. ESB2007, 21st European conference on biomaterials, Brighton, UK, 56

  12. Trampuz A, Zimmerli W (2006) Injury 37:S59

    Article  PubMed  Google Scholar 

  13. Garvin K, Feschuk C (2006) Clin Orthop Relat Res 437:105

    Google Scholar 

  14. Nikkola L, Viitanen P, Ashammakhi N (2009) J Biomed Mater Res 89B:518

    Article  CAS  Google Scholar 

  15. Jiang P-J, Patel S, Gbureck U, Caley R, Grover LM (2010) J Biomed Mater Res 93B:51

    CAS  Google Scholar 

  16. Vogt S, Schnabelrauch M, Weisser J, Kautz AR, Büchner H, Kühn KD (2007) Adv Eng Mater 9:1135

    Article  Google Scholar 

  17. Scharer BM, Sanicola SM (2009) J Foot Ankle Surg 48:540

    Article  PubMed  Google Scholar 

  18. Neut D, Kluin OS, Crielaard BJ, van der Mei HC, Busscher HJ, Grijpma DW (2009) Acta Orthop 80:514

    Article  PubMed  Google Scholar 

  19. Ashammakhi N, Veiranto M, Suokas E, Tiainen J, Niemelä S-M, Törmälä P (2006) J Mater Sci Mater Med 17:1275

    Article  CAS  PubMed  Google Scholar 

  20. Mäkinen TJ, Veiranto M, Knuuti J, Jalava J, Törmälä P, Aro HT (2006) Bone 36:292

    Google Scholar 

  21. Ignjatovic N, Uskokovic D (2004) Appl Surf Sci 238:314

    Article  CAS  ADS  Google Scholar 

  22. Kikuchi M, Koyama Y, Yamada T, Imamura Y, Okada T, Shirahama N, Akita K, Takakuda K, Tanaka J (2004) Biomaterials 25:5979

    Article  CAS  PubMed  Google Scholar 

  23. Liu Q, de Wijn J, van Blitterswijk CA (1998) J Biomed Mater Res 40:490

    Article  CAS  PubMed  Google Scholar 

  24. Gautier H, Daculsi G, Merle C (2001) Biomaterials 22:2481

    Article  CAS  PubMed  Google Scholar 

  25. Radin S, Ducheyne P (2007) Biomaterials 28:1721

    Article  CAS  PubMed  Google Scholar 

  26. Bow JSh, Liou SCh, Chen SY (2004) Biomaterials 25:3155

    Article  CAS  PubMed  Google Scholar 

  27. Gutmanas EY (1998) In: ASM handbook, 2nd edn, vol 7. ASM International, Materials Park, OH, p 574

Download references

Acknowledgement

The research was supported by BSF (Binational USA-Israel Science Foundation), Grant No. 2004293.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Gotman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makarov, C., Gotman, I., Radin, S. et al. Vancomycin release from bioresorbable calcium phosphate–polymer composites with high ceramic volume fractions. J Mater Sci 45, 6320–6324 (2010). https://doi.org/10.1007/s10853-010-4444-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4444-1

Keywords

Navigation