Skip to main content
Log in

Electrical conductivity studies of AgI–Ag2O–B2O3–TeO2 glasses

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The silver ion conducting boro tellurite glasses have been prepared by melt quenching technique. The conductivity and dielectric measurements were carried out on these glasses as a function of frequency from 10 Hz to 10 MHz over a temperature range of 298–328 K. The analysis of conductivity measurement shows that the silver ions are the main charge carriers, which are considered to be the predominant factor playing the role of enhancing the conductivity. The power law exponent s and stretched exponent β are found to be insensitive to both temperature and compositions. AC conductivity and dielectric relaxation behaviour of these glasses were also studied and the results are discussed in view of the structure of borate and tellurite network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. El-Damrawi G, (1994) J Non-Cryst Solids 176:91

    Article  CAS  Google Scholar 

  2. Stangrennec MK, Elliott SR (1994) Solid State Ionics 73:199

    Article  Google Scholar 

  3. Saunders GA, Metcalfe RD (1996) Phys Rev B 53:53

    Article  Google Scholar 

  4. Ingram MD (1987) Phys Chem Glasses 28:215

    CAS  Google Scholar 

  5. Magistris A (1993) In: Scrosati B, Magistris A, Mari CM, and Mariatto G (eds) Proceedings of the Nato advanced research workshop on fast ion transport in solids. Kluwer Academic Publishers, Netherlands, p. 213

  6. El-Damrawi G, Hassan AK, Meikail MS (1996) Phys Chem Glasses 37:101

    CAS  Google Scholar 

  7. El-Damrawi G (1995) J Phys Condens Matter 8:1557

    Article  Google Scholar 

  8. Magistris A, Chiodelli G (1983) Solid State Ionics 9 & 10:611

    Article  Google Scholar 

  9. Coppo D, Duclot JJ, Souquet JL (1996) Solid State Ionics 90:111

    Article  CAS  Google Scholar 

  10. Shastry MCR, Rao KJ (1989) Solid State Ionics 37:17

    Article  CAS  Google Scholar 

  11. Chiodelli G, Vigano GC, Magistris A, Villa M (1983) Solid State Ionics 8:311

    Article  CAS  Google Scholar 

  12. Chiodelli G, Magistris A, Villa M, Bjorkstam JL (1982) Mater Res Bull 17:1

    Article  CAS  Google Scholar 

  13. Krogh-Moe J (1962) Phys Chem Glasses 3:1

    CAS  Google Scholar 

  14. Krogh-Moe J (1965) Phys Chem Glasses 6:46

    CAS  Google Scholar 

  15. Bray PJ (1996) In: Porai-Koshits E (ed) The structure of glass. Consultant Bureau, New York

  16. Zhong J, Bray PJ (1989) J Non-Cryst Solids 111:67

    Article  CAS  Google Scholar 

  17. Abe T (1952) J Am Ceram Soc 35:756

    Article  Google Scholar 

  18. Everstein F, Stevels J, Waterman H (1960) J Phys Chem 1:123

    Google Scholar 

  19. Kreidl NJ (1983) In: Uhlmann DR and Kreidl NJ (eds) Glass science & technology. Academic Press, New York, p. 204

  20. Imaoka M, Yamazaki T (1968) J Am Ceram Soc 76:160

    CAS  Google Scholar 

  21. Yamamoto H, Nasu N, Mustoka J, Kanira K (1994) J Non-Cryst Solids 170:87

    Article  CAS  Google Scholar 

  22. Jianrang Q, Osaka A, Tanatia T, Jakuda J, Minura Y (1992) J Mater Sci 27:3793

    Article  Google Scholar 

  23. Heo J, Lam D, Sigel DH, Mendoza EA, Hensely DA (1992) J Am Ceram Soc 75:277

    Article  CAS  Google Scholar 

  24. Komatsu T, Mohri H (1999) Phys Chem Glasses 40:257

    CAS  Google Scholar 

  25. Burger H, Kneipp K, Hobert H, Vogel W, Kozhukharov V, Neov S (1992) J Non-Cryst Solids 151:134

    Article  Google Scholar 

  26. Mori H, Igarashi J, Sakata J (1995) Glasstech Ber 68:327

    CAS  Google Scholar 

  27. Akagi R, Handa K, Ohtori N, Hannon AC, Tatsumisago M, Umesaki N (1999) J Non-Cryst Solids 256 & 257:111

    Article  Google Scholar 

  28. Sabry AI, El-Samanoudy MM (1995) J Mater Sci 30:3930

    Article  CAS  Google Scholar 

  29. El-Damrawi G, Abd-El-Maksoud S (2000) Phys Chem Glasses 41(1):6

    CAS  Google Scholar 

  30. Kim SH, Yoko T, Sakka S (1993) J Am Ceram Soc Japan 76:2486

    Article  CAS  Google Scholar 

  31. Mori H, Kitami J, Sakata H (1994) J Non-Cryst Solids 168:157

    Article  CAS  Google Scholar 

  32. Rossignol S, Reau JM, Janguy B, Videau JJ, Portier J (1993) J Non-Cryst Solids 155:77

    Article  CAS  Google Scholar 

  33. Jayasinghe GDLK, Coppo D, Bandaranayake PWSK, Souquet JL (1995) Solid State Ionics 76:297

    Article  CAS  Google Scholar 

  34. Tatsumisago M, Minami T, Kowada Y, Adachi H (1994) Phys Chem Glasses 35:89

    CAS  Google Scholar 

  35. Nasu H, Matsushita O, Kamiya K, Kobayashi H, Kubodera K (1990) J Non-Cryst Solids 124:275

    Article  CAS  Google Scholar 

  36. Kimura K (1989) Jpn J Appl Phys 28:810

    Article  CAS  Google Scholar 

  37. Tanabe S, Hirao K, Soga N (1990) J Non-Cryst Solids 122:79

    Article  CAS  Google Scholar 

  38. Lefterova ED, Angelov PV, Dimitriev YB (2000) Phys Chem Glasses 41:362

    CAS  Google Scholar 

  39. Jayasinghe GDLK, Bandaranayaka PWSK, Dissanayake MAKL, Gunawardane RP (1995) Solid State Ionics 78:199

    Article  CAS  Google Scholar 

  40. Rodrigues ACM, Duclot MJ (1988) Solid State Ionics 28–30:729

    Article  Google Scholar 

  41. Sanderson RT (1983) Polar covalence. Academic Press, New York

    Google Scholar 

  42. Borjessor L, Jorell LM, Howells WS (1989) Phil Mag B 59:105

    Article  Google Scholar 

  43. Dalba G, Fornasini P, Fontana A, Rocca F, Burattini WS (1988) Solid State Ionics 28–30:713

    Article  Google Scholar 

  44. Ratner MA, Nitzan A (1988) Solid State Ionics 28–30:3

    Article  Google Scholar 

  45. Govindaraj G, Baskaran N, Shahi K, Monoravi P (1995) Solid State Ionics 76:47

    Article  CAS  Google Scholar 

  46. Sebastian K, Frishat GH (1992) Phys Chem Glasses 33:199

    CAS  Google Scholar 

  47. Minami T, Ikeda Y, Tanaka M (1982) J Non-CrystSolids 52:159

    Article  CAS  Google Scholar 

  48. Lefterova ED, Angelov PV, Dimitriev YB (2000) Phys Chem Glasses 41:362

    CAS  Google Scholar 

  49. Almond DP, West AR, Grant RJ (1982) Solid State Commun 44:1277

    Article  CAS  Google Scholar 

  50. Almond DP, Duncan GK, West AR (1983) Solid State Ionics 8:159

    Article  CAS  Google Scholar 

  51. Almond DP, Hunter CC, West AR (1984) J Mater Sci 19:3236

    Article  CAS  Google Scholar 

  52. Jonscher AK (1977) Nature 267:673

    Article  CAS  Google Scholar 

  53. Kohlrausch R (1847) Prog Ann 12:393

    Google Scholar 

  54. Williams G, Watts DC (1970) Trans Faraday Soc 66:80

    Article  CAS  Google Scholar 

  55. Williams G, Watts DC, Dev SB, North AM (1971) Trans Faraday Soc 67:1323

    Article  CAS  Google Scholar 

  56. Moynihan CT, Boesch LP, Laberge NL (1973) Phys Chem Glasses 14:122

    CAS  Google Scholar 

  57. Patel HK, Martin SW (1992) Phys Rev B 45:10292

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor K.J. Rao for encouragement and many discussions. One of the authors (R.V.A) acknowledges the UGC, Govt. of India for financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Anavekar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gowda, V.C.V., Anavekar, R.V. Electrical conductivity studies of AgI–Ag2O–B2O3–TeO2 glasses. J Mater Sci 42, 3816–3824 (2007). https://doi.org/10.1007/s10853-006-0408-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0408-x

Keywords

Navigation