Skip to main content
Log in

Electronic structures of Mg3Pn2 (Pn=N, P, As, Sb and Bi) and Ca3N2 calculated by a first-principle pseudopotential method

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electronic structure calculations for Mg3N2, Mg3P2, Mg3As2 (low and high temperature modifications), Mg3Sb2, Mg3Bi2, and Ca3N2 have been performed. Mg3Sb2 is predicted to be an indirect semiconductor with the gap value of about 0.41 eV. Mg3As2 with a high temperature modification is also predicted to be a semiconductor with the gap value of about 1.1 eV, but the valence band maximum and the conduction band minimum of Mg3Bi2 contacts at Γ which would make it a semimetal. Mg3N2, Mg3P2, and Mg3As2 (low temperature phase) are semiconductors with the direct band gaps of 1.64 eV, 1.73 eV, and 1.57 eV, respectively. Ca3N2 is a semiconductor with a gap of about 1.2 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. NAKAMURA, T. SUEMASU, K. TAKAURA, F. HASEGAWA, A. WAKAHARA and M. IMAI, Appl. Phys. Lett. 81 (2002) 1032.

    Article  CAS  Google Scholar 

  2. H. MATSUI, M. KURAMOTO, T. ONO, Y. NOSE, H. TATSUOKA and H. KUWABARA,  J. Cryst. Growth 237 (2002) 2121.

    Article  Google Scholar 

  3. S. KISHINO, T. IIDA, T. KUJI and Y. TAKANASHI, Thin Solid Films 46 (2004) 90.

    Article  Google Scholar 

  4. M. W. HELLER and G. C. DANIELSON,  J. Phys. Chem. Solid 23 (1962) 601

    Article  CAS  Google Scholar 

  5. T. KAJIKAWA, K. SHIDA, K. SHIRAISHI, M. OHMORI and T. HIRAI, Mat. Sci. Forum. 687 (1999) 308.

    Google Scholar 

  6. R. J. LABOTZ, D. R. MASON and D. F. O’KANE, J. Electrochem. Soc. 110 (1963) 127.

    Article  CAS  Google Scholar 

  7. Y. NODA, N. OTSUKA, K. MASUMOTO and I. NISHIDA, J. Jpn. Inst. Metals 53 (1989) 487.

    Article  CAS  Google Scholar 

  8. L. M. ZHANG, Y. G. LENG, H. Y. JIANG, L. D. CHEN and T. HIRAI, Mat. Sci. Eng. B86 (2001) 195.

    CAS  Google Scholar 

  9. T. KAJIKAWA, N. KIMURA and T. YOKOYAMA, Proc. 22nd Int. Conf. Thermoelectrics (2003) 305.

  10. C. M. FANG, R. A. DE GROOT, R. J. BRULS, H. T. HINTZEN and G. DE WITH, J. Phys.- Condense. Mat. 11 (1999) 4833.

    Article  CAS  Google Scholar 

  11. M. G. M. ARMENTA, A. REYES-SERRATO and M. BORJA, Phys. Rev. B62 (2000) 4890.

    Article  Google Scholar 

  12. E. ORHAN, S. JOBIC, R. BREC, R. MARCHAND and J.-Y. SAILLARD, J. Mater. Chem. 12 (2002) 2475.

    Article  CAS  Google Scholar 

  13. L. M. WATSON, C. A. W. MARSHALL and C. P. CARDOSO, J. Phys. F: Met. Phys 14 (1984) 113.

    Article  CAS  Google Scholar 

  14. R. XU, R. A. DE GROOT and W. VAN DER LUGT, J. Phys.- Condense. Mat. 5 (1993) 7551

    Article  CAS  Google Scholar 

  15. K. PIGON, Helv. Phys. Acta 41 (1968) 1104.

    CAS  Google Scholar 

  16. B. PREDEL, “Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys” in “Landolt-Boernstein Numerical Data and Functional Relationships in Science and Technology, New Series, Group IV, Volume 5, edited by O. Madelung (Springer-Verlag, Berlin) (1991–1998).

  17. P. VILLARS and L. D. CALVERT, “Pearson’s Handbook of Crystallographic Data for Intermetallic Phases” 2nd ed., Vol. 1–4, (ASM International, Ohio) (1991).

  18. Y. IMAI, M. MUKAIDA, M. UEDA and A. WATANABE, Intermetallics 9 (2001) 721.

    Article  CAS  Google Scholar 

  19. Y. IMAI, M. MUKAIDA, M. UEDA and A. WATANABE, J. Alloys Compounds 347 (2002) 244.

    Article  CAS  Google Scholar 

  20. Y. IMAI and A. WATANABE, Intermetallics 11 (2003) 451.

    Article  CAS  Google Scholar 

  21. M. C. PAYNE, M. P. TETER, D. C. ALLAN, T. A. ARIAS and J. D. JOANNOPOULOS, Rev. Modern Phys. 64 (1992).

  22. D. VANDERBILT, Phys. Rev. B41 (1990) 7892.

    Article  Google Scholar 

  23. J. P. PERDEW and Y. WANG, ibid. B33 (1986) 8800.

    Article  Google Scholar 

  24. H. J. MONKHORST and J. D. PACK, ibid. B13 (1976) 5188.

    Article  Google Scholar 

  25. D. M. VERBRUGGE and J. B.VAN ZYTVELD, J. Non-Crystalline Solids 736 (1993) 156.

    Google Scholar 

  26. G. BUSCH, F. HULLIGER and U. WINKLER, Helv. Phys. Acta 27 (1954) 249.

    Google Scholar 

  27. O. RECHEWEG, C. LIND, A. SIMON and F. J. DISALVO, Zeit fur Naturforschung B –J. Chem.. Sci. 58 (2003) 159.

    Article  Google Scholar 

  28. P. LARSON and S. D. MOBANTI, Phys. Rev. B59 (1999) 15660.

    Article  Google Scholar 

  29. Y. IMAI, M. MUKAIDA and T. TSUNODA, Intermetallics 8 (2000) 381.

    Article  CAS  Google Scholar 

  30. F. AYMERICH and G. MULA, Phys. Stat. Sol. 42 (1970) 697.

    Article  CAS  Google Scholar 

  31. G. M. FEHRENBACK and H. BROSS, Eur. Phys. J. B 9 (1999) 37.

    Article  Google Scholar 

  32. A. MOKHTARI and H. AKBARZADEH, Physica B 337 (2003) 122.

    Article  CAS  Google Scholar 

  33. A. M. HEYNS, L. C. PRINSLOO, K.-J. RANGE and M. STASSEN, J. Solid State Chem. 137 (1998) 33.

    Article  CAS  Google Scholar 

  34. D. J. MIN and N. SANO, Met. Trans. B19 (1988) 433.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Imai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imai, Y., Watanabe, A. Electronic structures of Mg3Pn2 (Pn=N, P, As, Sb and Bi) and Ca3N2 calculated by a first-principle pseudopotential method. J Mater Sci 41, 2435–2441 (2006). https://doi.org/10.1007/s10853-006-5181-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-5181-3

Keywords

Navigation