Skip to main content

Advertisement

Log in

Effects of uniaxial compressive stress on the electrocaloric effect of ferroelectric ceramics

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effects of uniaxial compressive stress on the electrocaloric effect (ECE) of ferroelectric ceramics are studied by Landau–Ginzburg–Devonshire (LGD) thermodynamic approach, direct method, and indirect techniques. Soft lead zirconate titanate ceramics is used as a model material. The direct measurement results are given by an infrared camera combined with a set of specially designed testing setup. It is demonstrated that ECE can be significantly tuned by uniaxial compressive stress. The direct measurement results are essentially in agreement with the LGD theory calculated results, while significant discrepancies between direct and indirect methods are observed. These results are explained by the complex domain switching and possible phase transition behavior under the coupled thermo-electro-mechanical field. In addition, with compressive stress of 50 MPa, direct measurement shows that an improvement of ~ 66.7% in cooling capacity can be achieved at 375 K, which demonstrates that the application of compressive stress is an effective approach for enhancing ECE in ferroelectric ceramics. Our results not only provide insights into the effects of uniaxial compressive stress on ECE, but also offer more opportunities for the design of electrocaloric materials and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Scott JF (2011) Electrocaloric materials Annu Rev Mater Res 41:229–240

    Article  CAS  Google Scholar 

  2. Correia T, Zhang Q (2014) Electrocaloric materials. Springer, Berlin

    Book  Google Scholar 

  3. Kobeko P, Kurtsehatov J (1930) Dielektrische eigenschaften der seignettesalzkristalle. J Z Phys 66:192–205

    Article  CAS  Google Scholar 

  4. Mischenko AS, Zhang Q, Scott JF, Whatmore RW, Mathur ND (2006) Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 311:1270–1271

    Article  CAS  Google Scholar 

  5. Neese B, Chu BJ, Lu SG, Wang Y, Furman E, Zhang QM (2008) Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321:821–823

    Article  CAS  Google Scholar 

  6. Qian XS, Ye HJ, Zhang YT, Gu H, Li X, Randall CA, Zhang QM (2014) Giant electrocaloric response over abroad temperature range in modified BaTiO3ceramics. Adv Funct Mater 24:1300–1305

    Article  CAS  Google Scholar 

  7. Goupi FL, Axelsson AK, Dunne LJ, Valant M, Manos G, Lukasiewicz T, Dec J, Berenov A, Alford NM (2014) Anisotropy of the electrocaloric effect in lead-free relaxor ferroelectrics. Adv Energy Mater 4:1301688

    Article  CAS  Google Scholar 

  8. Ma YB, Xu BX, Albe K, Grünebohm A (2018) Tailoring the electrocaloric effect by internal bias fields and field protocols. Phys Rev Appl 10:024048

    Article  CAS  Google Scholar 

  9. Weyland F, Bradeško A, Ma YB, Koruza J, Xu BX, Albe K, Rojac T, Novak N (2018) Impact of polarization dynamics and charged defects on the electrocaloric response of ferroelectric Pb(Zr, Ti)O3 ceramics. Energy Technol 6:1519–1525

    Article  CAS  Google Scholar 

  10. Akcay G, Alpay SP, Rossetti GA, Scott JF (2008) Influence of mechanical boundary conditions on the electrocaloric properties of ferroelectric thin films. J Appl Phys 103:024104

    Article  CAS  Google Scholar 

  11. Li B, Ren WJ, Wang XW, Meng H, Liu XG, Wang ZJ, Zhang ZD (2010) Intrinsic electrocaloric effects in ferroelectric poly(vinylidenefluoride-trifluoroethylene) copolymers: roles of order of phase transition and stresses. Appl Phys Lett 96:102903

    Article  CAS  Google Scholar 

  12. Liu Y, Infante IC, Lou XJ, Lupascu DC, Dkhil B (2014) Giant mechanically-mediated electrocaloric effect in ultrathin ferroelectric capacitors at room temperature. Appl Phys Lett 104:012907

    Article  CAS  Google Scholar 

  13. Liu Y, Wei J, Janolin PE, Infante IC, Kreisel J, Lou XJ, Dkhil B (2014) Prediction of giant elastocaloric strength and stress-mediated electrocaloric effect in BaTiO3single crystals. Phys Rev B 90:104107

    Article  CAS  Google Scholar 

  14. Chauhan A, Patel S, Vaish R (2015) Enhanced electrocaloric effect in pre-stressed ferroelectric materials. Energy Technol 3:177–186

    Article  CAS  Google Scholar 

  15. Liu Y, Wei J, Janolin PE, Infante IC, Lou XJ, Dkhil B (2014) Giant room-temperature barocaloric effect and pressure-mediated electrocaloric effect in BaTiO3single crystal. Appl Phys Lett 104:162904

    Article  CAS  Google Scholar 

  16. Patel S, Chauhan A, Vaish R, Lynch CS (2017) Large barocaloric effect and pressure-mediated electrocaloric effect in Pb0.99Nb0.02(Zr0.95Ti0.05)0.08O3ceramics. J Am Ceram Soc 100:4902–4911

    Article  CAS  Google Scholar 

  17. Chauhan A, Patel S, Wang S, Novak N, Xu BX, Lv P, Vaish R, Lynch CS (2017) Enhanced performance of ferroelectric materials under hydrostatic pressure. J Appl Phys 122:224105

    Article  CAS  Google Scholar 

  18. Chauhan A, Patel S, Vaish R (2015) Multicaloric effect in Pb(Mn1/3 Nb2/3)O3–32PbTiO3 single crystals. Acta Mater 89:384–395

    Article  CAS  Google Scholar 

  19. Lisenkov S, Mani BK, Chang CM, Alman DJ, Ponomareva I (2013) Multicaloric effect in ferroelectric PbTiO3 from first principles. Phys Rev B 87:224101

    Article  CAS  Google Scholar 

  20. Wu HH, Zhu JM, Zhang TY (2015) Double hysteresis loops and large negative and positive electrocaloric effects in tetragonal ferroelectrics. Phys Chem Chem Phys 17:23897–23908

    Article  CAS  Google Scholar 

  21. Wang F, Li B, Ou Y, Liu LF, Peng CZ, Wang ZS, Wang W (2017) A stress-mediated negative/positive electrocaloric effect in Bi4Ti3O12 nanoparticles. Mater Lett 196:179–182

    Article  CAS  Google Scholar 

  22. Li YW, Zhou XL, Li FX (2010) Temperature-dependent mechanical depolarization of ferroelectric ceramics. J Phys D: Appl Phys 43:175501

    Article  CAS  Google Scholar 

  23. Li YW, Zhou XL, Miao HC, Cai HR, Li FX (2013) Mechanism of crystal-symmetry dependent deformation in ferroelectric ceramics: experiments versus model. J Appl Phys 113:214111

    Article  CAS  Google Scholar 

  24. Lines ME, Glass AM (1977) Principles and applications of ferroelectrics and related materials. Oxford University Press, Oxford

    Google Scholar 

  25. Haun MJ, Furman E, Jang SJ, Cross LE (1989) Thermodynamic theory of the lead zirconate-titanate solid solution system, part I: phenomenology. Ferroelectrics 99:13–25

    Article  CAS  Google Scholar 

  26. Li YW, Wang J, Li FX (2016) Intrinsic polarization switching in BaTiO3 crystal under uniaxial electromechanical loading. Phys Rev B 94:184108

    Article  Google Scholar 

  27. Lu SG, Zhang QM (2009) Electrocaloric materials for solid-state refrigeration. Adv Mater 21:1983–1987

    Article  CAS  Google Scholar 

  28. Kutnjak Z, Rožič B, Pirc R (2015) Electrocaloric effect: theory, measurements, and applications. Wiley encyclopedia of electrical and electronics engineering, Wiley, Hoboken

    Google Scholar 

  29. Kar-Narayan S, Crossley S, Moya X, Kovacova V, Abergel J, Bontempi A, Baier N, Defay E, Mathur ND (2013) Direct electrocaloric measurements of a multilayer capacitor using scanning thermal microscopy and infra-red imaging. Appl Phys Lett 102:032903

    Article  CAS  Google Scholar 

  30. Liu Y, Dkhil B, Defay E (2016) Spatially resolved imaging of electrocaloric effect and the resultant heat flux in multilayer capacitors. ACS Energy Lett 1:521–528

    Article  CAS  Google Scholar 

  31. Lynch CS (1996) The effect of uniaxial stress on the electro-mechanical response of 8/65/35 PLZT. Acta Mater 44:4137–4148

    Article  CAS  Google Scholar 

  32. Fang DN, Li CQ (1999) Nonlinear electric-mechanical behavior of a soft PZT-51 ferroelectric ceramic. J Mater Sci 34:4001–4010. https://doi.org/10.1023/A:1004603729657

    Article  CAS  Google Scholar 

  33. Chaplya PM, Carman GP (2001) Dielectric and piezoelectric response of lead zirconate-lead titanate at high electric and mechanical loads in terms of non-180° domain wall motion. J Appl Phys 90:5278

    Article  CAS  Google Scholar 

  34. Zhou DY, Kamlah M, Munz D (2005) Effects of uniaxial prestress on the ferroelectric hysteretic response of soft PZT. J Eur Ceram Soc 25:425–432

    Article  CAS  Google Scholar 

  35. Kerkamm I, Hiller P, Granzow T, Rödel J (2009) Correlation of small- and large-signal properties of lead zirconate titanate multilayer actuators. Acta Mater 57:77–86

    Article  CAS  Google Scholar 

  36. McLaughlin EA, Liu TQ, Lynch CS (2005) Relaxor ferroelectric PMN-32%PT crystals under stress, electric field and temperature loading: II-33-mode measurements. Acta Mater 53:4001–4008

    Article  CAS  Google Scholar 

  37. Schader FH, Rossetti GA Jr, Luo J, Webber KG (2017) Piezoelectric and ferroelectric properties of %3c001%3eC Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals under combined thermal and mechanical loading. Acta Mater 126:174–181

    Article  CAS  Google Scholar 

  38. Wang K, Yao FZ, Koruza J, Cheng LQ, Schader FH, Zhang MH, Rödel J, Li JF, Webber KG (2017) Electromechanical properties of CaZrO3 modified (K, Na)NbO3-based lead-free piezoceramics under uniaxial stress conditions. J Am Ceram Soc 100:2116–2122

    Article  CAS  Google Scholar 

  39. Dittmer R, Webber KG, Aulbach E, Jo W, Tan XL, Rödel J (2013) Electric-field-induced polarization and strain in 0.94(Bi1/2Na1/2)TiO3-0.06BaTiO3 under uniaxial stress. Acta Mater 61:1350–1358

    Article  CAS  Google Scholar 

  40. Li JJ, Li JT, Qin SQ, Su XP, Qiao LJ, Wang Y, Lookman T, Bai Y (2019) Effects of long- and short-range ferroelectric order on the electrocaloric effect in relaxor ferroelectric ceramics. Phys Rev Appl 11:044032

    Article  CAS  Google Scholar 

  41. Thacher PD (1968) Electrocaloric effects in some ferroelectric and antiferroelectric Pb(Zr, Ti)O3 compounds. J Appl Phys 39:1996

    Article  CAS  Google Scholar 

  42. Esteves G, Fancher CM, Röhrig S, Maier GA, Jones JL, Deluca M (2017) Electric-field-induced structural changes in multilayer piezoelectric actuators during electrical and mechanical loading. Acta Mater 132:96–105

    Article  CAS  Google Scholar 

  43. Dittmer R, Webber KG, Aulbach E, Jo W, Tan XL, Rödel J (2013) Optimal working regime of lead-zirconate-titanate for actuation applications. Sens Actuators A 189:187–194

    Article  CAS  Google Scholar 

  44. Goupil FL, Bennett J, Axelsson AK, Valant M, Berenov A, Bell AJ, Comyn TP, Alford NM (2015) Electrocaloric enhancement near the morphotropic phase boundary in lead-free NBT-KBT ceramics. Appl Phys Lett 107:172903

    Article  CAS  Google Scholar 

  45. Chauhan A, Patel S, Vaish R (2015) Multicaloric effect in Pb(Mn1/3Nb2/3)O332PbTiO3 single crystals: modes of measurement. Acta Mater 97:17–28

    Article  CAS  Google Scholar 

  46. Liu Y, Zhang GZ, Li Q, Bellaiche L, Scott JF, Dkhil B, Wang Q (2016) Towards multicaloric effect with ferroelectrics. Phys Rev B 94:214113

    Article  Google Scholar 

  47. Chen JY, Tang ZH, Lu QS, Zhao SF (2018) Giant negative electrocaloric effect over a broad temperature range in lead-free based Bi0.5(K0.15Na0.85)0.05TiO3 relaxor ferroelectric films. J Alloys Compd 756:62–67

    Article  CAS  Google Scholar 

  48. Cheng XY, Weyland F, Novak N, Li YW (2019) Indirect electrocaloric evaluation: influence of polarization hysteresis measurement frequency. Phys Status Solidi A 216:1900684

    Article  CAS  Google Scholar 

  49. Weyland F, Eisele T, Steiner S, Frömling T, Rossetti Jr. GA, Rödel J, Novak N (2017) Long term stability of electrocaloric response in barium zirconate titanate. J Eur Ceram Soc 38:551–556

    Article  CAS  Google Scholar 

  50. Bradeško A, Fulanović L, Vrabelj M, Otoničar M, Uršič H, Henriques A, Chung CC, Jones JL, Malič B, Kutnjak Z, Rojac T (2019) Electrocaloric fatigue of lead magnesium niobate mediated by an electric-field-induced phase transformation. Acta Mater 169:275–283

    Article  CAS  Google Scholar 

  51. Tan WL, Faber KT, Kochmann DM (2018) In-situ observation of evolving microstructural damage and associated effective electro-mechanical properties of PZT during bipolar electrical fatigue. Acta Mater 164:704–713

    Article  CAS  Google Scholar 

  52. Haun MJ, Zhuang ZQ, Furman E, Jang SJ, Cross LE (1989) Thermodynamic theory of the lead zirconate-titanate solid solution system, part III: curie constant and sixth-order polarization interaction dielectric stiffness coefficients. Ferroelectrics 99:45–54

    Article  CAS  Google Scholar 

  53. Chen LQ (2007) Appendix A: Landau free-energy coefficients. In: Rabe K, Ahn CH, Triscone JM (eds) Physics of ferroelectrics: a modern perspective. Springer, Berlin, pp 363–372

    Chapter  Google Scholar 

  54. Pertsev NA, Kukhar VG, Kohlstedt H, Waser R (2003) Phase diagrams and physical properties of single-domain epitaxialPb(Zr1−xTix)O3thin films. Phys Rev B 67:054107

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work reported in this paper received financial support from the National Natural Science Foundation of China (No. 11972262), the Natural Science Foundation of Hubei Province (No.2019CFB486), and the Fundamental Research Funds for the Central Universities (No. 2042019kf0025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingwei Li, Meiya Li or Min Feng.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Li, Y., Zhu, D. et al. Effects of uniaxial compressive stress on the electrocaloric effect of ferroelectric ceramics. J Mater Sci 55, 8802–8813 (2020). https://doi.org/10.1007/s10853-020-04640-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04640-4

Navigation