Skip to main content
Log in

Microstructural refinement of β-sintered and Ti-6Al-4V porous-coated by temporary alloying with hydrogen

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of thermochemical treatments, in which hydrogen was used as a temporary alloying element to refine the lamellar microstructure of β-sintered and porous-coated Ti-6Al-4V was formulated. Each step of the treatment sequence (hydrogenation, eutectoid decomposition and dehydrogenation) was studied separately, on uncoated specimens and then on porous-coated specimens. The resultant microstructures can have α-grain sizes less than 1 μm, aspect ratios near unity and discontinuous grain boundary α (GBα), microstructural attributes which increase the fatigue strength. Microstructural refinement occurs because hydrogen-alloying reduces the (α+β)↔β transition temperature and enables a eutectoid decomposition reaction to occur. The optimal hydrogenation temperature is 850 °C, because hydrogen concentrations of 0.71 to 0.85 wt% are in-diffused and β-transformation is achieved. These weight percentages are in the optimal range for efficient eutectoid decomposition kinetics, β-transformation obviates the need for a separate β-transformation treatment step. A separate eutectoid decomposition treatment step may be used, or eutectoid decomposition may be combined with dehydrogenation. The finest eutectoid microstructures are obtained if hydrogen concentrations are in the range 0.5 to 0.8 wt%. The criteria for dehydrogenation are efficient removal of hydrogen, with minimal grain growth and absence of GBα. These criteria are best met by using dehydrogenation temperatures <700 °C. Altering the sintering temperature or adding a porous coating does not affect the parameters of the hydrogen-alloying treatment steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Stubbington,AGARD Conf. Proc. No. 185 (1976) 3.1.

    Google Scholar 

  2. H. Margolin, J. C. Williams, J. C. Chesnutt andG. Lutjering, in “Titanium '80 Science and Technology”, Proceedings of the 4th International Conference on Titanium, Kyoto, May 1980, edited by H. Kimura and O. Izumi (Metallurgical Society of AIME, Warrendale, Pennsylvania, 1980) p. 169.

    Google Scholar 

  3. M. Peters, A. Gysler andG. Lutjering,ibid. “ p. 1777.

    Google Scholar 

  4. G. Lutjering andA. Gysler, in “Titanium, Science and Technology”, Proceedings of the 5th International Conference on Titanium, Munich, September 1984, edited by G. Lutjering, U. Zwicker and W. Bunk (Deutsche Gesellschaft für Metallkunde, Oberursel, 1985) p. 2065.

    Google Scholar 

  5. J. C. Chesnutt, C. G. Rhodes andJ. C. Williams, ASTM STP 600 (ASTM, Philadelphia, 1976) p. 99.

    Google Scholar 

  6. R. E. Lewis, J. G. Bjeletich, T. M. Morton andF. A. Crossley, ASTM STP 601 (ASTM, Philadelphia, 1976) p. 371.

    Google Scholar 

  7. J. J. Lucas andP. P. Konieczny,Met. Trans. 2 (1971) 911.

    Google Scholar 

  8. C. A. Stubbington andA. W. Bowen,J. Mater. Sci. 9 (1974) 941.

    Google Scholar 

  9. S. M. Soltesz, R. J. Smickley andL. E. Dardi, in “Titanium, Science and Technology”, Proceedings of the 5th International Conference on Titanium, Munich, September 1984, edited by G. Lutjering, U. Zwicker and W. Bunk (Deutsche Gesellschaft für Metallkunde, Oberursel, 1985) p. 187.

    Google Scholar 

  10. J. Galante, W. Rostoker, R. Lueck andR. D. Ray,J. Bone Joint Surg. 53A (1971) 101.

    Google Scholar 

  11. W. R. Kerr, P. R. Smith, M. E. Rosenblum, F. J. Gurney, Y. R. Mahajan andL. R. Bidwell, in “Titanium '80 Science and Technology”, Proceedings of the 4th International Conference on Titanium, Kyoto, May 1980, edited by H. Kimura and O. Izumi (Metallurgical Society of AIME, Warrendale, Pennsylvania, 1980) p. 2477.

    Google Scholar 

  12. L. Levin, R. G. Vogt, D. Eylon andF. H. Froes, in “Titanium, Science and Technology”, Proceedings of the 5th International Conference on Titanium, Munich, September 1984, edited by G. Lutjering, U. Zwicker and W. Bunk (Deutsche Gesellschaft für Metallkunde, Oberursel, 1985) p. 2107.

    Google Scholar 

  13. D. Eylon, C. F. Yolton andF. H. Froes, in “Titanium Science Technology and Applications”, Proceedings of the 6th World Conference on Titanium, Cannes, June 1988, edited by P. Lacombe, R. Tricoy and G. Beranger (Les Editions de Physique, Paris, 1989) p. 1523.

    Google Scholar 

  14. C. F. Yolton, D. Eylon andF. H. Froes,ibid.“ p. 1641.

    Google Scholar 

  15. D. H. Kohn andP. Ducheyne, in Transactions of the 15th Annual Meeting of the Society for Biomaterials, Orlando, May 1989, p. 155.

  16. Idem., J. Mater. Sci. submitted.

  17. W. H. Kao, D. Eylon, C. F. Yolton andF. H. Froes, in “Progress in Powder Metallurgy”, Vol. 37 (MPIF, Princeton, New Jersey, 1981) p. 289.

    Google Scholar 

  18. ASTM Standard F136-84, in “Annual Book of ASTM Standards”, Vol. 13.01: “Medical Devices” (ASTM, Philadelphia, 1987) p. 28.

    Google Scholar 

  19. ASTM Standard E112-85, in “Annual Book of ASTM Standards”, Vol. 3.01: “Metals—Mechanical Testing; Elevated and Low-temperature Tests; Metallography” (ASTM, Philadelphia, 1988) p. 277.

    Google Scholar 

  20. L. S. Darken andR. W. Gurry, “Physical Chemistry of Metals” (McGraw-Hill, New York, 1953).

    Google Scholar 

  21. R. J. Wasilewski andG. L. Kehl,Metallurgia 50 (1954) 225.

    Google Scholar 

  22. R. G. Vogt, D. Eylon andF. H. Froes, US Patent 4680063 (1987).

  23. ASM Committee on Titanium and Titanium Alloys, in “Titanium and Titanium Alloys Source Book”, edited by M. J. Donachie, Jr (ASM, Metals Park, Ohio, 1981) p. 330.

    Google Scholar 

  24. D. J. Hagemaier, in “Titanium Science and Technology”, Proceedings of the 2nd International Conference on Titanium, Cambridge, Massachusetts, May 1972, edited by R. I. Jaffee and H. M. Burte (Plenum Press, New York, 1973) p. 755.

    Google Scholar 

  25. R. J. Smickley andE. Dardi, US Patent 4505 764 (1985).

  26. C. M. Craighead, G. A. Lenning andR. I. Jaffee,J. Met. 194 (1952) 1317.

    Google Scholar 

  27. G. A. Lenning, C. M. Craighead andR. I. Jaffee,J. Met. 200 (1954) 367.

    Google Scholar 

  28. M. Hansen, “Constitution of Binary Alloys” (McGraw-Hill, New York, 1958).

    Google Scholar 

  29. N. E. Paton andJ. C. Williams, in “Hydrogen in Metals: Proceedings of an International Conference on the Effects of Hydrogen on Materials Properties and Selection and Structural Design”, edited by I. M. Bernstein and A. W. Thompson (ASM, Metals Park, Ohio, 1974) p. 409.

    Google Scholar 

  30. E. S. K. Menon andH. I. Aaronson,Acta Metall. 34 (1986) 1963.

    Google Scholar 

  31. C. J. Beevers, in “The Science, Technology and Application of Titanium”, Proceedings of the 1st International Conference on Titanium, London, May 1968, edited by R. I. Jaffee and N. E. Promisel (Pergamon Press, London, 1968) p. 535.

    Google Scholar 

  32. V. Kerlins, in “Metals Handbook”, 9th Edn, Vol. 12: “Fractography” (ASM, Metals Park, Ohio, 1979) p. 12.

    Google Scholar 

  33. U. Zwicker, “Titan und Titanlegierungen” (Springer-Verlag, Berlin, 1974).

    Google Scholar 

  34. C. Hammond andJ. Nutting,Met. Sci. (1977) 474.

  35. D. H. Kohn andP. Ducheyne,J. Biomed. Mater. Res. in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohn, D.H., Ducheyne, P. Microstructural refinement of β-sintered and Ti-6Al-4V porous-coated by temporary alloying with hydrogen. J Mater Sci 26, 534–544 (1991). https://doi.org/10.1007/BF00576555

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00576555

Keywords

Navigation