Skip to main content
Log in

Synthesis and characterization of cobalt–nickel alloy nanowires

  • Festschrift in honour of Prof T R Anantharaman on the occasion of his 80th birthday
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report on the synthesis and magnetic characterization of ordered arrays of cobalt–nickel alloy nanowires. These alloy nanowires were electrodeposited into the pores of anodic alumina templates. The physical properties of the samples were investigated using scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and vibrating sample magnetometer. We found that for the alloy nanowires the field at which the magnetization saturates increases with increasing Co fraction and the saturation field in the normal direction is smaller than the parallel direction, indicating easy magnetization direction normal to wire axis. Nanowires with different compositional ratio of cobalt and nickel showed a nonlinear dependence of coercivity as a function of cobalt concentration. These findings will help tailor magnetic nanoalloys with controlled properties for various applications, such as high density magnetic storage or nanoelectrode arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fert A, Piraux L (1999) J Magn Magn Mater 200:338. doi:https://doi.org/10.1016/S0304-8853(99)00375-3

    Article  CAS  Google Scholar 

  2. Skomski R, Zeng H, Sellmyer DJ (2002) J Magn Magn Mater 249:175. doi:https://doi.org/10.1016/S0304-8853(02)00527-9

    Article  CAS  Google Scholar 

  3. Allwood DA, Vernier N, Xiong G, Cooke MD, Atkinson D, Faulkner CC et al (2002) Appl Phys Lett 81:4005. doi:https://doi.org/10.1063/1.1523634

    Article  CAS  Google Scholar 

  4. Prinz GA (1999) J Magn Magn Mater 200:57. doi:https://doi.org/10.1016/S0304-8853(99)00335-2

    Article  CAS  Google Scholar 

  5. Nait Abdi A, Buchera JP (2003) Appl Phys Lett 82:430. doi:https://doi.org/10.1063/1.1539908

    Article  Google Scholar 

  6. Peng Y, Shen T-H, Zhao XG, Ashworth B, Faunce CA, Liu YW (2003) Appl Phys Lett 83:362. doi:https://doi.org/10.1063/1.1590427

    Article  CAS  Google Scholar 

  7. Saib A, Vanhoenacker-Janvier D, Huynen I, Encinas A, Piraux L, Ferain E et al (2003) Appl Phys Lett 83:2378. doi:https://doi.org/10.1063/1.1610798

    Article  CAS  Google Scholar 

  8. Sunder RS, Deevi SC (2005) Int Mater Rev 50:1. doi:https://doi.org/10.1179/174328005X14302

    Article  Google Scholar 

  9. Whitney TM, Jiang JS, Searson PC, Chien CL (1993) Science 261:1316. doi:https://doi.org/10.1126/science.261.5126.1316

    Article  CAS  Google Scholar 

  10. Hulteen JC, Martin CR (1997) J Mater Chem 7:1075. doi:https://doi.org/10.1039/a700027h

    Article  CAS  Google Scholar 

  11. Schwarzacher W, Attenborough K, Michel A, Nabiyouni G, Meier JP (1997) J Magn Magn Mater 165:23. doi:https://doi.org/10.1016/S0304-8853(96)00465-9

    Article  CAS  Google Scholar 

  12. Schonenberger C, van der Zande BMI, Fokkink LGJ, Henny M, Schmid C, Krulger M, Bachtold A, Huber R, Birk H, Staufer U (1997) J Phys Chem B 101:5497. doi:https://doi.org/10.1021/jp963938g

    Article  Google Scholar 

  13. Huczko A (2000) Appl Phys (Berl) A70:365

    Article  Google Scholar 

  14. He H, Tao NJ (2004) In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology, vol X. American Scientific Publishers, San Diego, pp 1–18

  15. Shankar KS, Kar S, Raychaudhuri AK, Subbannab GN (2004) Appl Phys Lett 84:993. doi:https://doi.org/10.1063/1.1646761

    Article  CAS  Google Scholar 

  16. Zhu H, Yang S, Ni G, Yu D, Du Y (2001) Scripta Mater 44:2291. doi:https://doi.org/10.1016/S1359-6462(01)00761-8

    Article  CAS  Google Scholar 

  17. Piercea JP, Plummer EW, Shen J (2002) Appl Phys Lett 81:1890. doi:https://doi.org/10.1063/1.1506185

    Article  Google Scholar 

  18. Yin AJ, Li J, Jian W, Bennett AJ, Xu JM (2001) Appl Phys Lett 79:1039. doi:https://doi.org/10.1063/1.1389765

    Article  CAS  Google Scholar 

  19. Garcia JM, Asenjo A, Velazquez J, Garcia D, Vazquez M, Aranda P et al (1999) J Appl Phys 85:5480. doi:https://doi.org/10.1063/1.369868

    Article  CAS  Google Scholar 

  20. Nielsch K, Wehrspohn RB, Barthel J, Kirschner J, Gosele U, Fischer SF et al (2001) Appl Phys Lett 79:1360. doi:https://doi.org/10.1063/1.1399006

    Article  CAS  Google Scholar 

  21. Nielsch K, Wehrspohn RB, Barthel J, Kirschner J, Fischer SF, Kronmuller H et al (2002) J Magn Magn Mater 249:234. doi:https://doi.org/10.1016/S0304-8853(02)00536-X

    Article  CAS  Google Scholar 

  22. Feldman LC, Mayer JW (1986) Fundamentals of surface and thin film analysis. Prentice Hall Inc., USA

    Google Scholar 

  23. Hnilicka M, Karmazin L (1974) Scripta Meter 8:1029. doi:https://doi.org/10.1016/0036-9748(74)90404-9

    Article  CAS  Google Scholar 

  24. Tang XT, Wang GC, Shima M (2006) J Magn Magn Mater 309:188. doi:https://doi.org/10.1016/j.jmmm.2006.06.032

    Article  Google Scholar 

  25. Zhan Q-F, Gao J-H, Liang Y-Q, Di N-L, Cheng Z-H (2005) PRB 72:024428. doi:https://doi.org/10.1103/PhysRevB.72.024428

    Article  Google Scholar 

  26. Kim D, Park D-Y, Yoo BY, Sumodjo PTA, Myung NV (2003) Electrochim Acta 48:819. doi:https://doi.org/10.1016/S0013-4686(02)00773-9

    Article  CAS  Google Scholar 

  27. Sapp SA, Mitchell DT, Martin CR (1999) Chem Mater 11:1183. doi:https://doi.org/10.1021/cm990001u

    Article  CAS  Google Scholar 

  28. Yu S, Li N, Wharton J, Martin CR (2003) Nano Lett 3:815. doi:https://doi.org/10.1021/nl0340576

    Article  CAS  Google Scholar 

  29. Menon VP, Martin CR (1995) Anal Chem 67:1920. doi:https://doi.org/10.1021/ac00109a003

    Article  CAS  Google Scholar 

  30. Forrer F, Schlottig F, Siegenthaler H, Textor M (2000) J Appl Electrochem 30:533. doi:https://doi.org/10.1023/A:1003941129560

    Article  CAS  Google Scholar 

Download references

Acknowledgements

PMA and RV acknowledge funding support from the RPI Nanoscale Science and Engineering Initiative of the National Science Foundation under NSF award numbers DMR-0117792 and DMR-0642573 on directed assembly of nanostructures and Philip Morris USA. The authors acknowledge Prof. G.W. Meng and Dr. Y.Y. Jung for helpful discussion. ST acknowledge financial support provided by SIUC ORDA through start-up funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Talapatra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talapatra, S., Tang, X., Padi, M. et al. Synthesis and characterization of cobalt–nickel alloy nanowires. J Mater Sci 44, 2271–2275 (2009). https://doi.org/10.1007/s10853-008-3015-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3015-1

Keywords

Navigation