Skip to main content
Log in

Review Thermal—magnetic investigation of the decomposition of copper oxalate—a precursor for catalysts

  • Review Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A catalyst precursor with highly developed specific surface area of 10 m2/g and a pore volume of 0.02 cm3/g is synthesized. The peculiarities of the system studied related to the structure of the copper oxalate, crystallizing as an anhydrous salt with “zeolitic type” bonded water, its content varying between 0 and 1, are pointed out. The thermal decomposition is followed by investigating the magnetic properties in situ. The results are complementary to the information obtained by DTA/TG studies. The performance of magnetic measurements and the calculation of the magnetic moment μeff in the range from –100 to 300C allow a conclusion to be drawn concerning the coordination of the Cu(II) ions and the change in the oxidation state. In the starting oxalate, Cu(II) is in a tetrahedral-like coordination, which is a result of the strong tetragonal deformation of the octahedral field and of the stronger tendency of the oxalate ion to rotate around the C–C bond axis. The dehydration process does not affect the XRD results, but changes the temperature dependence of μeff due to the change in the Cu(II) coordination. The μeff values during the decomposition process suggest that the proportion Cu(II)-Cu(I) could be varied in the final product by varying the temperature range. By isothermal annealing at 300C for 1 h, an oxide product containing Cu(II)-Cu(I) is synthesized and characterized. The solid phase products corresponding to the separate parts of the DTA/TG curves are: [Cu] → Cu + Cu2O (185–300C), 0.5Cu2O + 2CuO (300–345C), 3CuO (345–400C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. MARTA, O. HOROWITZ and M. ZAHARESCU, Key Eng. Mat. 132–136 (1997) 1239.

    Google Scholar 

  2. G. E. SHTER and G. S. GRADER, J. Am. Ceram. Soc. 77 (1994) 1436.

    Google Scholar 

  3. K. BERNARD and G. GRITZNER, Phys. C., Supercond. 196(3/4) (1992) 259.

    Google Scholar 

  4. CONGKANG XU, YINGKAI LIU, GOUDING XU and GUANGHOU WANG, Mat. Res. Bull. 37 (2002) 2365.

    Google Scholar 

  5. M. POPA, J. M. CALDERON-MORENO, D. CRISAN and M. ZAHARESCU, J. Therm. Anal. Calorimetry 62 (2000) 633.

    Google Scholar 

  6. T. SPASOVA, M. KHRISTOVA, D. PANAYOTOV and D. MEHANDJIEV, J. Cat. 189 (1999) 43.

    Google Scholar 

  7. E. BEKYAROVA and D.MEHANDJIEV, in Proceedings of the 8th International Symposium on Heterogeneous Catalys (Varna, 1996) p. 787.

  8. G. BLIZNAKOV, D. MEHANDJIEV and B. DYAKOVA, Kinet. Katal. 9 (1968) 269.

    Google Scholar 

  9. D. MEHANDJIEV and E. NICKOLOVA-ZHECHEVA, Thermoch. Acta 51 (1981) 343.

    Google Scholar 

  10. E. ZHECHEVA, S. ANGELOV and D. MEHANDJIEV, ibid. 67 (1983) 91.

    Google Scholar 

  11. A. M. DONIA, N. R. E. RADWAN and A. A. ATIA, J. Therm. Anal. Calorimetry 61 (2000) 249.

    Google Scholar 

  12. V. V. ZELENTZOV and T. G. AMINOV, Dokl. Akad. Nauk SSSR 158 (1964) 1393.

    Google Scholar 

  13. O. ASAI, M. KISHITA and M. KUBO, J. Phys. Chem. 63 (1959) 96.

    Google Scholar 

  14. L. DUBICKI, Inorg. Chem. 5 (1966) 93.

    Google Scholar 

  15. B. N. FIGGIS and D. J. MARTIN, ibid. 5 (1966) 100.

    Google Scholar 

  16. J. J. GIRERD, O. KAHN and M. VERDAGUER, ibid. 19 (1980) 274.

    Google Scholar 

  17. A. MICHALOWICZ, J. J. GIRERD and J. GOULON, ibid. 18 (1979) 3004.

    Google Scholar 

  18. A. GLEIZES F. MAURY and J. GALY, ibid. 19 (1980) 2074.

    Google Scholar 

  19. H. FICHTNER- SCHMITTLER, Crystal Res. Technol. 19 (1984) 1225.

    Google Scholar 

  20. H. SCHMITTLER, Monatsber. Deut. Acad. Wiss. Berlin 10 (1968) 581.

    Google Scholar 

  21. LE VAN MY, G. PERINET and P. BLANCO, Bull. Soc. Chim. France 361 (1969) 361.

    Google Scholar 

  22. K. P. PRIBYLOV and D. SH. FAZLULINA, Zh. Inorg. Khim. 14 (1969) 660.

    Google Scholar 

  23. K. NAGASE, K. SATO and N. TANAKA, Bull. Chem. Soc. Japan 48 (2) (1975) 439.

    Google Scholar 

  24. Y. A. UGAI, Zh. Obshch. Khim. 24 (1954) 1315.

    Google Scholar 

  25. R. PRASAD, Thermoch. Acta 406 (2003) 99.

    Google Scholar 

  26. D. BROADBENT, J. DOLLIMOR, D. DOLLIMOR and T. A. EVANS, J. Chem. Soc. Faraday Trans. 87(1) (1991) 161.

    Google Scholar 

  27. P. PESHEV, G. GYUROV, Y. KHRISTOVA, K. PETROV, D. KOVACHVO, Y. DIMITRIEV, N. NENCHEVA and E. EVLAKHOR, Mater. Res. Bull. 23 (1988) 1765.

    Google Scholar 

  28. D. DOLLIMORE, Thermoch. Acta 177 (1991) 59.

    Google Scholar 

  29. Idem., ibid. 117 (1987) 331.

    Google Scholar 

  30. V. V. BOLDYREV, I. S. NEVANCHEV, JU. I. MIHAYLOV and E. F. HAYRETDINOV, Kinet. Katal. 11 (1970) 367.

    Google Scholar 

  31. M. E. BROWN, D. DOLLIMORE and A. K. GALWEY, in “Comprehensive Kinetics, Reactions in the Solid State,” edited by C.H. Bamford and C. F. H. Tipper (Elsevier, Amsterdam 1980) Vol. 22, p. 218.

    Google Scholar 

  32. H. J. T. ELLINGHAM, J. Soc. Chem. Ind., (London) 63 (1944) 125.

    Google Scholar 

  33. N. J. CARR and A. K. GALWEY, J. Chem. Soc. Faraday Trans 1 84(5) (1988) 1357.

    Google Scholar 

  34. F. E. MABBS and D. J. MACHIN, in “Magnetism and Transition Metal Complexes” (Chapman & Hall, London, 1973) p. 153.

    Google Scholar 

  35. D. MEHANDJIEV and S. ANGELOV, in “Magnetochemistry of Solid State” (Nauka I Izkustvo, Sofia, 1979) p.116.

    Google Scholar 

  36. R. BOCA, in “Theoretical Foundations of Molecular Magnetism” (Elsevier, Amsterdam, Lousanne, New Yok, Oxford, Shannon, Singapore, Tokyo, 1999) p. 504.

    Google Scholar 

  37. UPAC (Fiz.Chem.Division), Recomandation 1984, Pure Appl. Chem. 57 (1985) 603.

  38. T. TSONCHEVA, S. VANKOVA and D. MEHANDJIEV, Fuel’82(2003) 755.

  39. V. RAKIC, V. DONDUR, S. GAJINOV and A. AUROUX, Thermoch. Acta 420 (2004) 51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Donkova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donkova, B., Mehandjiev, D. Review Thermal—magnetic investigation of the decomposition of copper oxalate—a precursor for catalysts. J Mater Sci 40, 3881–3886 (2005). https://doi.org/10.1007/s10853-005-0487-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-0487-0

Keywords

Navigation