Skip to main content
Log in

Modelling the behaviour of gas bubbles in an epoxy resin: evaluating the input parameters for a diffusion model using a solubility parameter approach

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Models based on mass diffusion theory successfully represent the growth and collapse of gas bubbles in an epoxy resin. Solution of the steady-state diffusion equations requires measurement of the diffusion coefficient and solubility of the mobile species within the resin pre-cursor. These parameters are affected by changes in temperature and/or pressure and are generally not measured as part of a processing schedule. Models have been evaluated that predict the prerequisite driving force in terms of a concentration gradient and the interaction with the processing variables from the chemistry of the resin molecule. A solubility parameter approach has been used to estimate the solubility of gas in the resin in conjunction with regular solution theory. The surface tension forces, which also play an active role in bubble stability and dynamics, have been estimated from molar attraction constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Hull, “Introduction to Composite Materials”, (Cambridge University Press, 1981) Ch. 7, p. 145.

  2. J. R. Wood, PhD thesis, University of Surrey, UK (1992).

    Google Scholar 

  3. J. R. Wood and M. G. Bader, in “Proceedings of 8th International Conference on Composite Materials”, Honolulu, HA, USA, 10 May (1991) pp. 1–9.

  4. Shell Resins, “Epikote Technical Manual”, E.P. 1.1.12, 3rd Edn (1987).

  5. H. Batzer and S. A. Zahir, J. Appl. Polym. Sci. 19 (1975) 585.

    Article  CAS  Google Scholar 

  6. K. Ravindranath and K. S. Ghandi, ibid. 24 (1979) 1115.

    Article  CAS  Google Scholar 

  7. S. Glasstone, “Textbook of Physical Chemistry”, (Mac-Millan, 1948) p. 486.

  8. J. R. Wood and M. G. Bader, Compos. Manuf. submitted.

  9. J. H. Hildebrand, J. Am. Chem. Soc. 38 (1916) 1452.

    Article  CAS  Google Scholar 

  10. P. A. Small, J. Appl. Chem. 3 (1953) 71.

    Article  CAS  Google Scholar 

  11. S. Wu, J. Phys. Chem. 72 (1968) 3332.

    Article  CAS  Google Scholar 

  12. C. M. Hansen and A. Beerbower, in “Encyclopedia of Chemical Technology”, 2nd Edn Supplement Volume, edited by A. Standen, (Interscience, New York, 1971) p. 889.

    Google Scholar 

  13. R. D. Harrison (ed.) “Nuffield Advanced Science, Book of Data” (Longman, London, 1972).

    Google Scholar 

  14. C. M. Hansen, Ind. Eng. Chem. Prod. Res. Devel. 8 (1969) 2.

    Article  CAS  Google Scholar 

  15. C. E. Rogers, in “Polymer Permeability”, edited by J. Comyn (Elsevier Applied Science, Barking, Essex, 1985) Ch. 2, p. 11.

    Chapter  Google Scholar 

  16. A. S. Michaels, H. J. Bixler and H. L. Fein, J. Appl. Phys. 35 (1964) 3165.

    Article  CAS  Google Scholar 

  17. G. J. Van Amerongen, J. Appl. Phys. 17 (1946) 972.

    Article  Google Scholar 

  18. S. Glasstone, “Textbook of Physical Chemistry”, (MacMillan, London, 1948) pp. 453–703.

    Google Scholar 

  19. J. H. Hildebrand and R. L. Scott, “Regular Solutions” (Prentice-Hall, Englewood Cliffs, NJ, 1962) Ch. 4, p. 41.

    Google Scholar 

  20. J. M. Prausnitz, “Molecular Thermodynamics of Fluid Phase Equilbria”, (Prentice-Hall, 1969) Ch. 8, p. 365.

  21. J. H. Hildebrand and R. L. Scott, “Solubility of Non-Electrolytes”, (Reinhold, 1950) Ch. 1, p. 1.

  22. J. M. Prausnitz and F. H. Shair, Am. Inst. Chem. Eng. J. 7 (1961) 682.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, J.R., Bader, M.G. Modelling the behaviour of gas bubbles in an epoxy resin: evaluating the input parameters for a diffusion model using a solubility parameter approach. Journal of Materials Science 29, 844–850 (1994). https://doi.org/10.1007/BF00446002

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00446002

Keywords

Navigation