Skip to main content
Log in

Mechanical behaviour of poly (methyl methacrylate)

Part 2 The temperature and frequency effects on the fatigue crack propagation behaviour

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The effect of temperature and cyclic frequency on fatigue crack propagation (FCP) rates were investigated for poly methylmethacrylate (PMMA). Test temperature ranged from −30 to 100° C which includes theβ transition and approachesT g. FCP experiments were conducted at frequencies of 1, 10, 50 and 100 Hz. In general, the FCP rates increased with increasing temperature and decreasing cyclic frequency. The crack growth rate is near a maximum at 80° C and 10 Hz. When the experimental conditions approach the glass transition region, e.g. studies at 100° C, the failure mechanism changes and the material becomes more fatigue resistant while simultaneously softening. The frequency dependence ofda/dN provided by the Michel-Manson (M-M) model is shown to be valid up to about 80° C, in absence of extensive plastic deformation. FCP results exhibit an interaction between the thermal and mechanical driving forces which is not consistent with the M-M model.

Plots of FCP rate were made against the reciprocal of temperature. The apparent activation energies calculated from these plots varied from 13 to 44 kJ mol−1, and show that the activation energy increases as Δ/K increases and as cyclic frequency decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Hertzberg andJ. A. Manson, “Fatigue of Engineering Plastics”, (Academic Press, New York, 1980).

    Google Scholar 

  2. Idem, “Fatigue and Fracture”, Encyclo. Polymer Sci. Eng., Vol. 6, 2nd edn (J. Wiley, New York, 1986).

    Google Scholar 

  3. W.-M. Cheng, J. A. Manson, R. W. Hertzberg, G. A. Miller andL. H. Sperling,ACS Polym. Mat. Sci. Eng. in press.

  4. J. D. Phillips, M. S. Thesis, Lehigh University, 1987.

  5. R. W. Hertzberg, M. D. Skibo andJ. A. Manson. ASTM STP 700, 1980.

  6. R. W. Lang, M. T. Hahn, R. W. Hertzberg andJ. A. Manson, ASTM STP 833 1984.

  7. M. T. Hahn, R. W. Hertzberg andJ. A. Manson.J. Mater. Sci. 21 (1986) 31.

    Google Scholar 

  8. J. C. Michel, J. A. Manson andR. W. Hertzberg,Polym. Prepr., ACS Div. Polym. Chem. 26(2) (1985) 141.

    Google Scholar 

  9. J. C. Michel PhD dissertation, Lehigh University, 1984.

  10. R. W. Hertzberg, J. A. Manson andM. D. Skibo,Polymer 19 (1978) 358.

    Google Scholar 

  11. R. Schirrer,J. Mater. Sci. 22 (1987) 2289.

    Google Scholar 

  12. R. Seldon,Polym. Testing 7 (1987) 209.

    Google Scholar 

  13. L. H. Lee, J. F. Mandell andF. J. McGarry,Polym. Eng. Sci. 27(15) (1987) 1128.

    Google Scholar 

  14. F. Zandman, “Etude de la Deformation et de la Pupture des Matieres Plastiques”, Publications Scientifique et Technique du Ministere de l'Air, No. 291, Paris, 1954.

  15. I. Wolock, J. A. Kies andS. B. Newman, “Fracture”, edited by B. L. Averbach, D. K. Felbeck, G. T. Hahn and D. A. Thomas (Wiley, New York, 1959) pp. 250–262.

    Google Scholar 

  16. S. B. Newman andI. Wolock,J. Appl. Phys. 29 (1958) 49.

    Google Scholar 

  17. W.-M. Cheng, G. A. Miller, J. A. Manson, R. W. Hertzberg andL. H. Sperling,J. Mater. Sci. 25 (1990) 1917.

    Google Scholar 

  18. Idem, ibid. 25 (1990) 1931.

    Google Scholar 

  19. J. C. Radon, P. Chauhan andL. E. Calver,Colloid Polym. Sci. 254 (1976) 382.

    Google Scholar 

  20. J. D. Ferry, Viscoelastic Properties of Polymers,” 3rd edn (John Wiley, New York, 1980).

    Google Scholar 

  21. R. W. Hertzberg, ASTM STP 948, p. 5, 1987.

    Google Scholar 

  22. C. Lair andC. G. Smith,Phil. Mag. 7 (1962) 847.

    Google Scholar 

  23. R. C. Bates andW. G. Clark Jr,Trans. Q ASM 62 (2) (1969) 380.

    Google Scholar 

  24. M. D. Skibo, R. W. Hertzberg, J. A. Manson andS. L. Kim,J. Mater. Sci. 12 (1977) 531.

    Google Scholar 

  25. L. Jilken andC. G. Gustafson, “Proceedings of Conference on Fatigue Threshold,” Stockholm Vol. 2, p. 715 (EMAS, Birmingham, 1981).

    Google Scholar 

  26. N. G. McCrum, B. E. Read andG. Williams, Anelastic and Dielectric Effects in Polymeric Solids” (John Wiley, New York, 1967).

    Google Scholar 

  27. H. H. Kausch, “Polymer Fracture” (Springer-Verlag, New York, 1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, W.M., Miller, G.A., Manson, J.A. et al. Mechanical behaviour of poly (methyl methacrylate). J Mater Sci 25, 1924–1930 (1990). https://doi.org/10.1007/BF01045744

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01045744

Keywords

Navigation