Skip to main content
Log in

Dislocation etch pit formation on non-metallic crystals

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Experimental results available in the literature on selective etch pit formation on non-metallic crystals (excluding semiconductors) are discussed against the background of thermodynamic and topochemical adsorption theories of etching. The main purpose of the article is to deduce general principles involved in the formation of dislocation etch pits, and to better define the role of addition of salts to a solvent, of reaction products and solvents in etch pit formation. In addition, attention is focussed on the need for experimental determination of the absolute values of the parameters involved in thermodynamic theories in order to explain the results quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. Heimann, “Auflösung von Kristallen” (Springer-Verlag, Wien, New York, 1975); Russian translation: “Rastvorenie Kristallov” (Nedra, Leningrad, 1979).

    Google Scholar 

  2. K. Sangwal, J. Mater. Sci. 15 (1980) 237.

    Google Scholar 

  3. N. Cabrera, J. Chim. Phys. 53 (1956) 675.

    Google Scholar 

  4. N. Cabrera and M. M. Levine, Phil. Mag. 1 (1956) 450.

    Google Scholar 

  5. N. Cabrera, in: “The Surface Chemistry of Metals and Semiconductors” edited by H. C. Gatos, (John Wiley and sons, New York, Chichester, 1960) p. 71.

    Google Scholar 

  6. W. Schaarwächter, Phys. Status Solidi 12 (1965) 375.

    Google Scholar 

  7. C. Zwikker, “Physical Properties of Solid Materials” (Pergamon Press, London, New York, 1955) Chaps 6 and 8.

    Google Scholar 

  8. O. H. Wyatt and D. Dew-Hughes, “Metals, Ceramics and Polymers” (Cambridge University Press, London, 1974) Chaps 5 and 6.

    Google Scholar 

  9. K. Sangwal, Cryst. Res. Technol 17 (1982) K21.

    Google Scholar 

  10. W. Schaarwächter, Phys. Status Solidi 12 (1965) 865.

    Google Scholar 

  11. “Spravochnik Khimika” (Chemist's Handbook) 2nd Edition, Vol. 2 (Khimiya, Moscow, Leningrad, 1964).

  12. “Poradnik Fizkochemiczny” (Physico-chemical Handbook) (“Naukowo-Techniczne” Press, Warsaw, 1974).

  13. J. W. Mullin, “Crystallization” 2nd Edition (Butterworths, London, 1972).

    Google Scholar 

  14. A. V. Mishchenko and L. N. Rashkovich, Kristallogr. 16 (1971) 1064.

    Google Scholar 

  15. K. H. Hellwege and A. M. Hellwege (EDS), “Numerical Data and Functional Relationships in Science and Technology” Group III, Vol. 11 (Springer-Verlag, Berlin, Heidelberg, New York, 1979).

    Google Scholar 

  16. J. J. Gilman, J. Appl. Phys. 31 (1960) 2208.

    Google Scholar 

  17. V. D. Kuznetsov, “Surface Energy of Solids” (HMSO, London, 1957).

    Google Scholar 

  18. J. D. Dana and C. S. Hurlbut Jr. “Dana's Manual of Mineralogy” (John Wiley and sons, New York, 1959).

    Google Scholar 

  19. C. H. Guin, M. D. Katrich, A. I. Savinkov and M. P. Shaskolskaya, Krist. Tech. 15 (1980) 479.

    Google Scholar 

  20. A. R. Patel and A. V. Rao, J. Crystal Growth 38 (1978) 288.

    Google Scholar 

  21. A. R. Patel and S. K. Arora, Krist. Tech. 13 (1978) 1445.

    Google Scholar 

  22. E. Yu. Gutmanas and E. M. Nadgornyi, Fiz. Tverd. Tela 11 (1969) 1179.

    Google Scholar 

  23. J. J. Gilman, W. G. Johnston and G. W. Sears, J. Appl. Phys. 29 (1958) 747.

    Google Scholar 

  24. G. K. Baranova and E. M. Nadgornyi, Kristallogr. 17 (1972) 875.

    Google Scholar 

  25. V. Hari Babu and K. G. Bansigir, J. Appl. Phys. 38 (1967) 3399.

    Google Scholar 

  26. M. P. Shaskolskaya, L. G. Tsinzerling and R. J. Kulabukhova, Kristallogr. 10 (1965) 121.

    Google Scholar 

  27. P. R. Moran, J. Appl. Phys. 29 (1958) 1768.

    Google Scholar 

  28. E. Yu. Gutmanas and E. M. Nadgornyi, Kristallogr. 13 (1968) 114.

    Google Scholar 

  29. K. Sangwal and A. A. Urusovskaya, J. Crystal Growth 41 (1977) 216.

    Google Scholar 

  30. K. Kishan Rao and D. B. Sirdeshmukh, ibid. 44 (1978) 533.

    Google Scholar 

  31. E. B. Treivus, T. G. Petrov and J. E. Kamentsev, Kristallogr. 10 (1965) 380.

    Google Scholar 

  32. S. Murlidhar Rao and K. G. Bansigir, Ind. J. Pure Appl. Phys. 4 (1966) 363.

    Google Scholar 

  33. W. J. P. Van Enckevort and W. H. Van Der Linden, J. Crystal Growth 46 (1979) 126.

    Google Scholar 

  34. K. Sangwal and J. N. Sutaria, J. Mater. Sci. 11 (1976) 2271.

    Google Scholar 

  35. A. R. Patel and R. P. Singh, Japan. J. Appl. Phys. 6 (1967) 938.

    Google Scholar 

  36. A. E. Smirnov and A. A. Urusovskaya, J. Mater. Sci. 15 (1980) 1183.

    Google Scholar 

  37. A. R. Patel and C. C. Desai, Z. Kristallogr. 121 (1965) 54.

    Google Scholar 

  38. G. A. Keig and R. L. Koble, J. Appl. Phys. 39 (1968) 6090.

    Google Scholar 

  39. W. J. P. Van Enckevort, R. Janssen Van Rosmallen and W. H. Van Der Linden, J. Crystal Growth 49 (1980) 502.

    Google Scholar 

  40. M. Szurgot, J. Karniewicz and W. Kolasiński, Extended Abstracts ICCG-6, edited by E. I. Givargizov (Moscow, 1980) Vol. IV, p. 141.

  41. K. Sangwal, M. Szurgot, J. Karniewicz and W. Kolasinski, to be published in J. Crystal Growth 58 (1982).

  42. J. M. Thomas, E. L. Evans and T. A. Clarke, J. Chem. Soc. A (1971) 2338.

    Google Scholar 

  43. A. R. Patel and A. V. Rao, J. Crystal Growth 47 (1979) 213.

    Google Scholar 

  44. J. Karniewicz, M. Szurgot and B. Wojciechowski, Extended Abstracts ICCG-6, edited by E. I. Givargizov (Moscow, 1980) Vol. IV, p. 135.

  45. T. Nakamura and K. Ohi, J. Phys. Soc. Japan 16 (1961) 209.

    Google Scholar 

  46. B. Borecka, M. Szurgot and B. Wiktorowska, to be published.

  47. A. R. Patel and S. K. Arora, J. Mater. Sci. 12 (1977) 2124.

    Google Scholar 

  48. O. P. Bahl and J. M. Thomas, ibid. 2 (1967) 339.

    Google Scholar 

  49. T. Nakamura and K. Ohi, J. Phys. Soc. Japan 15 (1960) 1348.

    Google Scholar 

  50. J. E. Bright and M. J. Ridge, Phil. Mag. 6 (1961) 441.

    Google Scholar 

  51. A. R. Patel and K. S. Raju, Acta. Cryst. 23 (1967) 217.

    Google Scholar 

  52. V. A. Meleshina, T. F. Chernysheva and N. B. Russova, Kristallogr. 12 (1967) 371.

    Google Scholar 

  53. R. K. Taku, Ph.D. THESIS, Sardar Patel University, India, (1971).

  54. A. Sawada and R. Abe, Japan. J. Appl. Phys. 6 (1962) 699.

    Google Scholar 

  55. J. M. Thomas and J. O. Williams, Trans. Faraday Soc. 63 (1967) 1922.

    Google Scholar 

  56. K. Sangwal and M. Szurgot, Cryst. Res. Technol. 17 (1982) 49.

    Google Scholar 

  57. A. J. Forty, Phil. Mag. 43 (1952) 72.

    Google Scholar 

  58. R. O. Sharkhatunyan, A. G. Nalandyan and G. G. Muradyan, Kristallogr. 21 (1976) 223.

    Google Scholar 

  59. A. Kelly and G. W. Grooves, “Crystallography and Crystal Defects” (Longman, London, 1970).

    Google Scholar 

  60. K. Sangwal, N. L. Sizova and A. A. Urusovskaya, Krist. Tech. 12 (1977) 567.

    Google Scholar 

  61. V. N. Rozhanskii, E. V. Parvova, V. M. Stepanova and A. A. Predvoditelev, Kristallogr. 6 (1961) 704.

    Google Scholar 

  62. A. A. Urusovskaya, ibid. 8 (1963) 75.

    Google Scholar 

  63. Ya. Gerasimov, V. Dreving, E. Eremin, A. Kiselev, V. Lebedev, G. Panchenkov and A. Shlygin, “Physical Chemistry” Vol. 1 (Mir, Moscow, 1974).

    Google Scholar 

  64. K. Sangwal, T. C. Patel and M. D. Kotak, J. Mater. Sci. 14 (1979) 1869.

    Google Scholar 

  65. K. Sangwal and S. K. Arora, J. Phys. D: Appl. Phys. 12 (1979) 645.

    Google Scholar 

  66. G. K. Barabova and E. M. Nadgornyi, Kristallogr. 20 (1975) 446.

    Google Scholar 

  67. N. F. Kostin, S. V. Lubenets and K. S. Aleksandrov, ibid. 6 (1961) 737.

    Google Scholar 

  68. S. N. Andreev and V. G. Khaldin, Doklady Akad. Nauk SSSR 134 (1962) 335.

    Google Scholar 

  69. S. N. Andreev and O. V. Sapozhnikova, Zh. Neorg. Khimii 13 (1968) 1548.

    Google Scholar 

  70. J. Bjerum, G. Schwarzenbach and L. G. Sillén, “Stability Constants” Part II (Chemical Society, London, 1958).

    Google Scholar 

  71. K. Sangwal and T. C. Patel, unpublished results (1980).

  72. M. B. Ives and J. P. Hirth, J. Chem. Phys. 33 (1960) 517.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sangwal, K. Dislocation etch pit formation on non-metallic crystals. J Mater Sci 17, 2227–2238 (1982). https://doi.org/10.1007/BF00543732

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00543732

Keywords

Navigation