Skip to main content
Log in

Infiltration-processed, functionally graded aluminium titanate/zirconia–alumina compositePart II Mechanical properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The nature and degree of deformation-microfracture damage around Vickers indentations in a layered and graded aluminium titanate (AT)/(alumina–zirconia (AZ)) composite is studied. Samples with a homogeneous layer of AZ and a graded layer of heterogeneous AT/AZ are fabricated by an infiltration route. Depth profiling of the Vickers hardness shows that the hardness of the material is depth dependent with a relatively soft graded layer but a hard homogeneous layer. The microhardness of the graded layer is load dependent with 5.6 GPa as the asymptotic value at high loads. The evolution and accumulation of damage modes beneath Hertzian contacts are examined using "bonded-interface" sections. The stress–strain response of the material is monitored by Hertzian tests. The graded layer exhibits a distinctive "softening" in the stress–strain curve, indicating a microscale quasiplasticity which can be associated with grain debonding, grain sliding, diffuse microcracking, grain push-out and grain bridging. No contact-induced cracks are observed in the graded layer and the micro damage is widely distributed within the shear compression zone around and below the contacts. The capability of the graded material to absorb energy from the loading system and to distribute damage is somewhat akin to that of ceramics with heterogeneous microstructures. © 1998 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. An, H. M. Chan and K. K. Soni, J. Amer. Ceram. Soc. 79 (1996) 3142.

    Google Scholar 

  2. L. M. Braun, S. J. Bennison and B. R. Lawn, ibid. 75 (1992) 3049.

    Google Scholar 

  3. J. L. Runyan and S. J. Bennison, J. Eur. Ceram. Soc. 7 (1991) 93.

    Google Scholar 

  4. N. P. Padture, S. J. Bennison and H. M. Chan, J. Amer. Ceram. Soc. 76 (1993) 2312.

    Google Scholar 

  5. L. An, H. M. Chan, N. P. Padture and B. R. Lawn, J. Mater. Res. 11 (1996) 204.

    Google Scholar 

  6. N. P. Padture, D. C. Pender, S. Wuttiphan and B. R. Lawn, J. Amer. Ceram. Soc. 78 (1995) 3160.

    Google Scholar 

  7. H. Liu, B. R. Lawn and S. M. Hsu, ibid. 79 (1996) 1009.

    Google Scholar 

  8. B. R. Marple and D. J. Green, ibid. 74 (1991) 2453.

    Google Scholar 

  9. I. M. Low, R. Skala and D. S. Perera, J. Mater. Sci. Lett. 13 (1994) 1334.

    Google Scholar 

  10. S. Pratapa and I. M. Low, ibid. 15 (1996) 800.

    Google Scholar 

  11. W. C. Tu and F. F. Lange, J. Amer. Ceram. Soc. 78 (1995) 3283.

    Google Scholar 

  12. S. Pratapa, M.Sc Thesis, Curtin University of Technology, Perth (1997).

    Google Scholar 

  13. S. Pratapa, I. M. Low and B. H. O'connor, J. Mater. Sci. (1998) submitted.

  14. E. Schreiber, D. L. Anderson and N. Soga, “Elastic constants and their measurements” (McGraw-Hill, New York, 1973).

    Google Scholar 

  15. F. Guiberteau, N. P. Padture, H. Cau and B. R. Lawn, Phil. Mag. A 68 (1993) 1003.

    Google Scholar 

  16. C. K. Chyung, G. H. Beall and D. G. Grossman, in “Electron microscopy and structure of materials”, edited by G. Thomas, R.M. Fulrath and R.M. Fisher. (University of California Press, Berkeley, CA, 1972) pp 1167-94

    Google Scholar 

  17. N. P. Padture, C. J. Evans, H. K. Xu and B. R. Lawn, J. Amer. Ceram. Soc. 78 (1995) 215.

    Google Scholar 

  18. M. W. Barsoum and T. El-Raghy, ibid. 79 (1996) 1953.

    Google Scholar 

  19. K. Zeng, E. Soederlund, A. E. Giannakopoulos and D. J. Rowcliffe, Acta Mater. 44 (1996) 1127.

    Google Scholar 

  20. T. Goto and T. Hirau Mater. Res. Bull. 22 (1987) 2295.

    Google Scholar 

  21. R. Pampuch, J. Lis, J. Piekarczyk and L. Stobierski, J. Mater. Synth. Processing 1 (1993) 93.

    Google Scholar 

  22. T. El-Raghy, A. Zavaliangos, M. Barsoum and S. R. Kalidindi, J. Amer. Ceram. Soc. 80 (1997) 513.

    Google Scholar 

  23. I. J. McColm, “Ceramic hardness” (Plenum, New York, 1990).

    Google Scholar 

  24. M.V. Swaun and B. R. Lawn, Phys. Status Solidi 35 (1969) 909.

    Google Scholar 

  25. K. L. Johnson, “Contact mechanics” (Cambridge University Press, London, 1985).

    Google Scholar 

  26. D. Tabor, “Hardness of metals” (Clarendon, Oxford, 1951).

    Google Scholar 

  27. C. Stone, Department of Applied Physics, Curtin University of Technology, Perth, Australia, Physics Project 391 Interim Report.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pratapa, S., Low, I.M. Infiltration-processed, functionally graded aluminium titanate/zirconia–alumina compositePart II Mechanical properties. Journal of Materials Science 33, 3047–3053 (1998). https://doi.org/10.1023/A:1004375218439

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004375218439

Keywords

Navigation