Skip to main content
Log in

Influence of rare-earth addition on the long-period stacking ordered phase in cast Mg–Y–Zn alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructure and thermal stability of the Mg97Y2Zn1 (at.%) alloy, modified with the addition of 0.5 at.% of gadolinium or neodymium, have been examined by synchrotron radiation diffraction during in situ differential scanning calorimetry. The microstructure of the three alloys consists of magnesium dendrites with the Long Period Stacking Ordered (LPSO) phase at interdendritic regions. Rare-earth atoms substitute yttrium atoms in the LPSO phase, promoting the formation of the 14H structure. Lattice parameters of the LPSO do not change significantly with the rare-earth addition. However, they reduce the melting point of the LPSO phase, especially in the case of neodymium addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Inoue A, Kawamura Y, Matsushita M, Hayashi K, Koike J (2001) Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg–Zn–Y system. J Mater Res 16:1894–1900

    Article  Google Scholar 

  2. Kawamura Y, Kasahara T, Izumi S, Yamasaki M (2006) Elevated temperature Mg97Y2Cu1 alloy with long period ordered structure. Scripta Mater 55:453–456

    Article  Google Scholar 

  3. Hagihara K, Kinoshita A, Sugino Y, Yamasaki M, Kawamura Y, Yasuda HY, Umakoshi Y (2010) Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy. Acta Mater 58:6282–6293

    Article  Google Scholar 

  4. Yamasaki M, Hashimoto K, Hagihara K, Kawamura Y (2011) Effect of multimodal microstructure evolution on mechanical properties of Mg–Zn–Y extruded alloy. Acta Mater 59:3646–3658

    Article  Google Scholar 

  5. Kawamura Y, Yamasaki M (2007) Formation and mechanical properties of Mg97Zn1RE2 alloys with long period stacking ordered structure. Mater Trans 48:2986–2992

    Article  Google Scholar 

  6. Garces G, Pérez P, Gonzalez S, Adeva P (2006) Development of long-period ordered structures during crystallization of amorphous Mg80TM10Y10. Int J Mater Res 4:404–408

    Google Scholar 

  7. Mi SB, Jin QQ (2013) New polytypes of long-period stacking ordered structures in Mg–Co–Y. Scripta Mater 68:635–638

    Article  Google Scholar 

  8. Garces G, Oñorbe E, Dobes F, Pérez P, Antoranz JM, Adeva P (2012) Effect of microstructure on creep behaviour of cast Mg97Y2Zn1 (at.%) alloy. Mater Sci Eng A 539:48–55

    Article  Google Scholar 

  9. Luo ZP, Zhang SQ (2000) High-resolution electron microscopy on the X–Mg12ZnY phase in a high strength Mg–Zn–Zr–Y magnesium alloy. J Mater Sci Lett 19:813–816

    Article  Google Scholar 

  10. Abe E, Kawamura Y, Hayashi K, Inoue A (2002) Long-period ordered structure in a high-strength nanocrystalline Mg-1 at% Zn-2 at% Y alloy studied by atomic-resolution Z-contrast STEM. Acta Mater 50:3845–3857

    Article  Google Scholar 

  11. Zhu YM, Morton AJ, Nie JF (2010) The 18R and 14H long-period stacking ordered structures in Mg–Y–Zn alloys. Acta Mater 58:2936–2947

    Article  Google Scholar 

  12. Egusa D, Abe E (2012) The structure of long period stacking/order Mg–Zn–RE phases with extended non-stoichiometry ranges. Acta Mater 60:166–178

    Article  Google Scholar 

  13. Chino Y, Mabuchi M, Hagiwara S, Iwasaki H, Yamamoto A, Tsubakino H (2004) Novel equilibrium two phase Mg alloy with long-period ordered structure. Scripta Mater 51:714–774

    Article  Google Scholar 

  14. Matsuda M, Ii S, Kawamura Y, Ikuhara Y, Nishida M (2005) Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy. Mater Sci Eng A 393:269–274

    Article  Google Scholar 

  15. Abe E, Ono A, Itoi T, Yamasaki M, Kawamura Y (2011) Polytypes of long-period stacking structures synchronized with chemical order in a dilute Mg–Zn–Y alloy. Philos Mag Lett 91:690–696

    Article  Google Scholar 

  16. Nie JF, Oh-ishi K, Gao X, Hono K (2008) Solute segregation and precipitation in a creep-resistant Mg–Gd–Zn alloy. Acta Mater 56:6061–6076

    Article  Google Scholar 

  17. Yamasaki M, Sasaki M, Nishijima M, Hiraga K, Kawamura Y (2007) Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg–Zn–Gd alloys during isothermal aging at high temperature. Acta Mater 55:6798–6805

    Article  Google Scholar 

  18. Geng J, Chun YB, Stanford N, Davies CHJ, Nie JF, Barnett MR (2011) Processing and properties of Mg–6Gd–1Zn–0.6Zr: Part 2. Mechanical properties and particle twin interactions. Mater Sci Eng A 528A:3659–3665

    Article  Google Scholar 

  19. Nie JF (2012) Precipitation and hardening in magnesium alloys. Metall Mater Trans A 43:3891–3939

    Article  Google Scholar 

  20. Honma T, Ohkubo T, Kamado S, Hono K (2007) Effect of Zn additions on the age-hardening of Mg–2.0Gd–1.2Y–0.2Zr alloys. Acta Mater 55:4137–4150

    Article  Google Scholar 

  21. Yin DD, Wang QD, Gao Y, Chen CJ, Zheng J (2011) Effects of heat treatments on microstructure and mechanical properties of Mg–11Y–5Gd–2Zn–0.5Zr (wt%). J Alloys Compd 509:1696–1704

    Article  Google Scholar 

  22. Lee JB, Sato K, Konno TJ, Hiraga K (2011) Complex precipitates with long periodic stacking (LPS) phase and precipitation behaviors in the Mg97Zn1Y1.5Nd0.5 alloy by age-annealing. Intermetallics 19:1096–1101

    Article  Google Scholar 

  23. Okuda H, Horiuchi T, Tsukamoto T, Ochiai S, Yamasaki M, Kawamura Y (2013) Evolution of long-period stacking ordered structures on annealing as-cast Mg85Y9Zn6 alloy ingot observed by synchrotron radiation small-angle scattering. Scripta Mater 68:575–578

    Article  Google Scholar 

  24. Li B, Yan PF, Sui ML, Ma E (2010) Transmission electron microscopy study of stacking faults and their interaction with pyramidal dislocations in deformed Mg. Acta Mater 58:173–179

    Article  Google Scholar 

  25. Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Häusermann D (1996) Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Press Res 14:235–248

    Article  Google Scholar 

  26. caRine crystallography software version 3.1 Cyrille Boudias and Daniel Monceau. http://carine.crystallography.pagespro-orange.fr/

  27. PeakFit software version 4.11 AISN Software Inc. http://www.sigmaplot.com/products/peakfit/peakfit.php

  28. Villars P, Calvert LD (1985) Pearson′s handbook of crystallographic data for intermetallic Phases. American Society for Metals, Metal Park

  29. Hanawa S, Sugamata M, Kaneko J (1997) Structures and mechanical properties of rapidly solidified Mg–Y based alloys. Mater Sci Eng A 226–228:861–866

    Google Scholar 

  30. Agnew SR, Yoo MH, Tome CN (2001) Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Mater 49:4277–4289

    Article  Google Scholar 

  31. Grobner J, Kozlov A, Fang XY, Geng J, Nie JF, Schimdt-Fetzer R (2012) Phase equilibria and transformations in ternary Mg-rich Mg–Y–Zn alloys. Acta Mater 60:5948–5962

    Article  Google Scholar 

  32. Hagihara K, Sugino Y, Fukusumi Y, Umakoshi Y, Nakano T (2011) Plastic deformation behavior of Mg12ZnY LPSO-phase with 14H-typed structure. Mater Trans 52:1096–1103

    Article  Google Scholar 

  33. Oñorbe E, Garces G, Perez P, Adeva P (2012) Effect of the LPSO volume fraction on the microstructure and mechanical properties of Mg–Y2x–Znx alloys. J Mater Sci 47:1085–1093. doi:10.1007/s10853-011-5899-4

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to MEC for financial support for this study under project MAT2009-07811. The DeutchesElektronen-Synchrotron DESY is acknowledged for the provision of beamtime at the P07 beamline of the Petra III synchrotron facility in the framework of proposal I-20120285 EC. The authors would like to thank Dr. A. Rhys Williams for proof-reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Garcés.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcés, G., Requena, G., Tolnai, D. et al. Influence of rare-earth addition on the long-period stacking ordered phase in cast Mg–Y–Zn alloys. J Mater Sci 49, 2714–2722 (2014). https://doi.org/10.1007/s10853-013-7967-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7967-4

Keywords

Navigation