Skip to main content
Log in

Chemical synthesis of faceted α-Fe2O3 single-crystalline nanoparticles and their photocatalytic activity

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Faceted hematite nanocrystals have been synthesized via a hydrothermal route and their different morphologies can be tuned by appropriate stabilizer molecules. Detailed observation by high-resolution transmission electron microscopy and atomic force microscopy has revealed many terraces, steps, and kinks on the faceted surface of hematite nanoparticles, and thus, one growth mechanism of the terrace-step-kink model has been suggested to play a major role in determining the equilibrium morphology, together with effect of surface chemistry via the interaction between outer surfaces of iron and oxygen ions and functional groups. The photocatalytic activities were evaluated by decomposing rhodamine B dye. It has been shown that polyhedron hematite particles enclosed by high-index surface planes exhibited higher photoactivity. Density functional theory calculations revealed that the higher photoactivity originates from the more flat band edge in directions normal to the surface planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bratlie KM, Lee H, Komvopoulos K, Yang P, Somorjai GA (2007) Nano Lett 7:3097

    Article  CAS  Google Scholar 

  2. Yu J, Yu X, Huang B, Zhang X, Dai Y (2009) Cryst Growth Des 9:1474

    Article  CAS  Google Scholar 

  3. Salzemann C, Lisiecki I, Urban J, Pileni M-P (2004) Langmuir 100:11772

    Article  Google Scholar 

  4. Li S, Zheng Y, Qin G, Ren Y, Pei W, Zuo L (2011) Talanta 85:1260

    Article  CAS  Google Scholar 

  5. Zheng Z, Huang B, Wang Z, Guo M, Qin X, Zhang X, Wang P, Dai Y (2009) J Phys Chem C 113:14448

    Article  CAS  Google Scholar 

  6. Mou X, Li Y, Zhang B, Yao L, Wei X, Su DS, Shen W (2012) Eur J Inorg Chem 2012:2684

    Article  CAS  Google Scholar 

  7. Zhou X, Lan J, Liu G, Deng K, Yang Y, Nie G, Yu J, Zhi L (2012) Angew Chem Int Ed 51:178

    Article  CAS  Google Scholar 

  8. Zhang L, Zhou Q, Liu Z, Hou X, Li Y, Lv Y (2009) Chem Mater 21:5066

    Article  CAS  Google Scholar 

  9. Hu L, Peng Q, Li Y (2008) J Am Chem Soc 130:16136

    Article  CAS  Google Scholar 

  10. Barnard AS, Curtiss LA (2005) Nano Lett 5:1261

    Article  CAS  Google Scholar 

  11. Liu Q, Cui Z-M, Ma Z, Bian S-W, Song W-G, Wan L-J (2007) Nanotechnology 18:385605

    Article  Google Scholar 

  12. Chen JS, Zhu T, Yang XH, Yang HG, Lou XW (2010) J Am Chem Soc 132:13162

    Article  CAS  Google Scholar 

  13. Mou X, Wei X, Li Y, Shen W (2012) CrystEngComm 14:5107

    Article  CAS  Google Scholar 

  14. Zhao X, Zhu L, Zhang Y, Yan J, Lu X, Huang Y, Tang H (2012) J Hazard Mater 215:57

    Article  Google Scholar 

  15. Herney-Ramirez J, Vicente MA, Madeira LM (2010) Appl Catal B 98:10

    Article  CAS  Google Scholar 

  16. Gilbert B, Frandsen C, Maxey E, Sherman D (2009) Phys Rev B 79:1

    Article  Google Scholar 

  17. Kay A, Cesar I, Grätzel M (2006) J Am Chem Soc 128:15714

    Article  CAS  Google Scholar 

  18. Li FB, Li XZ, Li XM, Liu TX, Dong J (2007) J Colloid Interface Sci 311:481

    Article  Google Scholar 

  19. Xiang L, Zhao X, Yin J, Fan B (2011) J Mater Sci 47:1436. doi:10.1007/s10853-011-5924-7

    Article  Google Scholar 

  20. Kawahara T, Yamada K, Tada H (2006) J Colloid Interface Sci 294:504

    Article  CAS  Google Scholar 

  21. Andreozzi R (2003) Water Res 37:3682

    Article  CAS  Google Scholar 

  22. Cherepy NJ, Liston DB, Lovejoy JA, Deng H, Zhang JZ (1998) J Phys Chem B 102:770

    Article  CAS  Google Scholar 

  23. Lindgren T, Wang H, Beermann N, Vayssieres L, Hagfeldt A, Lindquist S-E (2002) Sol Energy Mater Sol Cells 71:231

    Article  CAS  Google Scholar 

  24. Yanina SV, Rosso KM (2008) Science 320:218

    Article  CAS  Google Scholar 

  25. Eggleston CM (2008) Science 320:184

    Article  CAS  Google Scholar 

  26. Ohno T, Sarukawa K, Matsumura M (2002) New J Chem 26:1167

    Article  CAS  Google Scholar 

  27. Li X, Yu X, He J, Xu Z (2009) J Phys Chem C 113:2837

    Article  CAS  Google Scholar 

  28. Pu Z, Cao M, Yang J, Huang K, Hu C (2006) Nanotechnology 17:799

    Article  CAS  Google Scholar 

  29. Hu X, Yu JC, Gong J, Li Q, Li G (2007) Adv Mater 19:2324

    Article  CAS  Google Scholar 

  30. Kresse G, Joubert D (1999) Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  31. Li S, Zhang Y, Esling C, Muller J, Lecomte J-S, Qin GW, Zhao X, Zuo L (2009) J Appl Cryst 42:519

    Article  CAS  Google Scholar 

  32. Shchukarev A, Boily J-F (2008) Surf Interface Anal 40:349

    Article  CAS  Google Scholar 

  33. Flynn CM (1984) Chem Rev 84:31

    Article  CAS  Google Scholar 

  34. Cao M, Liu T, Gao S, Sun G, Wu X, Hu C, Wang ZL (2005) Angew Chem Int Ed 44:4197

    Article  CAS  Google Scholar 

  35. Barrón V, Torrent J (1996) J Colloid Interface Sci 177:407

    Article  Google Scholar 

  36. Guo H, Barnard AS (2011) J Phys Chem C 115:23023

    Article  CAS  Google Scholar 

  37. Chen Q, Richardson NV (2003) Prog Surf Sci 73:59

    Article  CAS  Google Scholar 

  38. Yu S, Chow GM (2004) J Mater Chem 14:2781

    Article  CAS  Google Scholar 

  39. Li S, Qin GW, Pei W, Ren Y, Zhang Y, Esling C, Zuo L (2009) J Am Ceram Soc 92:631

    Article  CAS  Google Scholar 

  40. Frandsen C, Bahl C, Lebech B, Lefmann K, Kuhn L, Keller L, Andersen N, Zimmermann M, Johnson E, Klausen S, Mørup S (2005) Phys Rev B 72:214406

    Article  Google Scholar 

  41. Xu S, Feng D, Shangguan W (2009) J Phys Chem C 113:2463

    Article  CAS  Google Scholar 

  42. Yamanoi Y, Nakashima S, Katsura M (2009) Am Mineral 94:90

    Article  CAS  Google Scholar 

  43. Giocondi JL, Salvador PA, Rohrer GS (2007) Top Catal 44:529

    Article  CAS  Google Scholar 

  44. Nakau TJ (1960) J Phys Soc Jpn 15:727

    Article  CAS  Google Scholar 

  45. Rollmann G, Rohrbach A, Entel P, Hafner J (2004) Phys Rev B 69:1

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSFC (No. 51002026) and the Fundamental Research Funds for the Central Universities (Nos. N110410002, N110810001, and N100702001). S. Li acknowledges the financial support from the National High Technology Research and Development Program of China (2012AA030314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Qin, G., Meng, X. et al. Chemical synthesis of faceted α-Fe2O3 single-crystalline nanoparticles and their photocatalytic activity. J Mater Sci 48, 5744–5749 (2013). https://doi.org/10.1007/s10853-013-7366-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7366-x

Keywords

Navigation