Skip to main content
Log in

Phase relations of Li2O–FeO–SiO2 ternary system and electrochemical properties of Li x Si y O z compounds

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Phase equilibria in the ternary Li2O–FeO–SiO2 system have been studied by means of X-ray powder diffraction. The experimental results show that no new lithium ferrous silicate compounds can be found in our experimental condition which may be a candidate cathode material for LIBs. The Li2O–FeO–SiO2 system can be characterized by the existence of 9 three-phase regions. In Li2O–SiO2 binary system, Li2SiO3 and Li4SiO4 are purely synthesized by solid-state reactions; other new information includes the electrochemical properties of Li2SiO3 and Li4SiO4 compounds, where the electrochemical test indicated that initial discharge-specific capacities can reach to 136 and 129 mAhg−1, respectively. Enhanced performance was exhibited after carbon coating. The initial discharge-specific capacities of carbon-coated Li2SiO3 and carbon-coated Li4SiO4 compound can reach to 230 and 220 mAhg−1 respectively. Our results show that Li2SiO3 and Li4SiO4 samples have better capacity retention except for the first discharge. No significant change can be seen in ex situ XRD patterns for Li2SiO3/C, while the lithium-ion insertion/extraction reaction may exist in Li4SiO4/C as forming solid solutions (nominated Li4+x SiO4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  Google Scholar 

  2. Obrovac MN, Christensen L (2004) Structural changes in silicon anodes during lithium insertion/extraction. J Electrochem Solid State Lett 7:A93–A97

    Article  Google Scholar 

  3. Graetz J, Ahn CC, Yazami R, Fultz B (2003) Highly reversible lithium storage in nanostructured silicon. Electrochem Solid State Lett 6:A194–A197

    Article  Google Scholar 

  4. Besenhard JO, Yang J, Winter M (1997) Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J Power Sources 68:87–90

    Article  Google Scholar 

  5. Chan CK, Peng HL, Liu G, Mcllwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35

    Article  Google Scholar 

  6. Li H, Huang XJ, Chen LQ, Wu ZG, Liang Y (1999) A high capacity nano Si composite anode material for lithium rechargeable batteries. J Electrochem Solid State Lett 2:547–549

    Article  Google Scholar 

  7. Sandu I, Moreau P, Guyomard D, Brousse T, Roue L (2007) Synthesis of nanosized Si particles via a mechanochemical solid–liquid reaction and application in Li-ion batteries. J Solid State Ion 178:1297–1303

    Article  Google Scholar 

  8. Park MH, Kim MG, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J (2009) Silicon nanotube battery anodes. Nano Lett 9:3844–3847

    Article  Google Scholar 

  9. Yang J, Takeda Y, Imanishi N, Capiglia C, Xie JY, Yamamoto O (2002) SiOx-based anodes for secondary lithium batteries. J Solid State Ion 152:125–129

    Article  Google Scholar 

  10. Yuan QF, Zhao FG, Zhao YM, Liang ZY, Yan DL (2014) Evaluation and performance improvement of Si/SiOx/C based composite as anode material for lithium ion batteries. Electrochim Acta 115:16–21

    Article  Google Scholar 

  11. Padhi AK, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB (1997) Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electrochem Soc 144:1609–1613

    Article  Google Scholar 

  12. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  Google Scholar 

  13. Gong ZL, Li YX, Yang Y (2006) Synthesis and characterization of Li2MnxFe1−xSiO4 as a cathode material for lithium-ion batteries. Electrochem Solid State Lett 9:A542–A544

    Article  Google Scholar 

  14. Nytén A, Abouimrane A, Armand M, Gustaffson T, Thomas JO (2005) Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. J Electrochem Commun 7:156–160

    Article  Google Scholar 

  15. Gong ZL, Li YX, He GN, Li J, Yang Y (2008) Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol–gel process. J Electrochemical and Solid State Letters 11:A60–A63

    Article  Google Scholar 

  16. Hirai K, Tatsumisago M, Minami T (1995) Thermal and electrical properties of rapidly quenched glasses in the systems Li2S-SiS2-LixMOy (LixMOy = Li4SiO4, Li2SiO4). Solid State Ion 78:269–273

    Article  Google Scholar 

  17. Cruza D, Bulbulian S, Lima E, Pfeiffer H (2006) Kinetic analysis of the thermal stability of lithium silicates (Li4SiO4 and Li2SiO3). J Solid State Chem 179:909–916

    Article  Google Scholar 

  18. Nagai R, Kita F, Yamada M, Katayama H (2011) Development of highly reliable high-capacity batteries for mobile devices and small- to medium-sized batteries for industrial applications. Hitachi Rev 60:28–32

    Google Scholar 

  19. Chappel E, Holzapfel M, Chouteau G, Ott A (2000) Effect of cobalt on the magnetic properties of the LiFe1−xCoxO2 layered system (0 ≤ x ≤ 1). J Solid State Chem 154:451–459

    Article  Google Scholar 

  20. Neha P, Behrouz K, Matthias A, Amit VS, Loukya B, Ranjan D, Milko I, Leonard B, Irina G, Tim M, Arunava G (2015) Study of structural and ferromagnetic resonance properties of spinel lithium ferrite (LiFe5O8) single crystals. J Appl Phys 117:233907/1–233907/5

    Google Scholar 

  21. Luge R, Hoppe R (1984) Neues über Oxoferrate (III). I. Zur Kenntnis von Li5FeO4[1] Mit einer Notiz über Mischkristalle Na5Fe1- xGaxO4. Z Anorg Allg Chem 513:141–150

    Article  Google Scholar 

  22. Barblan FF (1943) Untersuchungen zur Kristallchemie von Fe2O3 und TiO2, sowie ihrer Alkaliverbindungen. Schweiz Miner Petrogr Mitt 23:295–352

    Google Scholar 

  23. de Picciotto LA, Thackeray MM (1986) Lithium insertion into the spinel LiFe5O8. Mater Res Bull 21:583–592

    Article  Google Scholar 

  24. Berbenni V, Marini A, Bruni G, Riccardi R (2000) Solid state reaction study in the systems Li2CO3-FeC2O4-2H2O and Li2CO3-Fe2(C2O4) 3·6H2O. Thermochim Acta 346:115–132

    Article  Google Scholar 

  25. Dong YZ, Zhao YM, Fu P, Zhou H, Hou XM (2008) Phase relations of Li2O–FeO–B2O3 ternary system and electrochemical properties of LiFeBO3 compound. J Alloy Compd 461:585–590

    Article  Google Scholar 

  26. Lin XH, Zhao YM, Dong YZ, Liang ZY, Yan DL, Liu XD, Kuang Q (2015) Subsolidus phase relations of Li2O–FeO–P2O5 system and the solid solubility of Li1+xFe1−xPO4 compounds under Ar/H2 atmosphere. J Mater Sci 50:203–209

    Article  Google Scholar 

  27. Krueger H, Kahlenberg V, Kaindl R (2007) Li2Si3O7: crystal structure and Raman spectroscopy. J Solid State Chem 180:922–928

    Article  Google Scholar 

  28. Jong BD, Super H, Spek A, Veldman N, Nachtegaal G, Fischer J (1998) Mixed alkali systems: structure and 29Si MASNMR of Li2Si2O5 and K2Si2O5. Acta Crystallogr B 54:568–577

    Article  Google Scholar 

  29. Hesse KF (1977) Refinement of the crystal structure of lithium polysilicate. Acta Crystallogr B 33:901–902

    Article  Google Scholar 

  30. Voellenkle H, Wittmann A, Nowotny H (1969) Die Kristallstruktur der Verbindung Li6[Si2O7]. Monatsh Chem 100:295–303

    Article  Google Scholar 

  31. Hoppe R, Bernet K, Moeller A (2003) Einkristall-Synthese hochschmelzender Oxyde bei niederer Temperatur:γ-Li4[SiO4] ohne Fehlordnung, isotyp mit Na4[SnO4]. (Was heißt’Isotypie‘?). Z fuer Anorg und Allg Chem 629:1285–1293

    Article  Google Scholar 

  32. Hofmann R, Hoppe R (1987) Ein neues Oxogermanat: Li8GeO6 = Li8O2[GeO4]. (Mit einer Bemerkung über Li8SiO6 und Li4GeO4). Z fuer Anorg und Allg Chem 555:118–128

    Article  Google Scholar 

  33. Hugh-Jones DA, Woodland AB, Angel RJ (1994) The structure of high-pressure C2/c ferrosilite and crystal chemistry of high-pressure C2/c pyroxenes. Am Miner 79:1032–1041

    Google Scholar 

  34. Sueno S, Cameron M, Prewitt CT (1976) Orthoferrosilite: high temperature crystal chemistry. Am Miner 61:38–53

    Google Scholar 

  35. Giusta AD, Ottonello G, Secco L (1990) Precision estimates of interatomic distances using site occupancies, ionization potentials and polarizability in Pbnm silicate olivines. Acta Crystallogr B 46:160–165

    Article  Google Scholar 

  36. Yamanaka T, Tobe H, Shimazu T, Nakatsuka A, Dobuchi Y, Ohtaka O, Nagai T (1998) Phase relations and physical properties of Fe2SiO4-Fe3O4 solid solution under pressures up to 12 Gpa. Geophys Monogr 101:451–459

    Google Scholar 

  37. Errandonea D, Santamaria-Perez D, Vegas A, Nuss J, Jansen M, Rodriguez-Hernandez P, Munoz A (2008) Structural stability of Fe5Si3 and Ni2Si studied by high-pressure X-ray diffraction and ab initio total-energy calculations. Phys Rev Ser 3 B 77:094113-1–094113-12

    Google Scholar 

  38. Modaressi A, Malaman B, Gleitzer C, Tilley RJD (1985) Préparation et étude d’un oxysilicate de fer de valence mixte Fe7(SiO4)O6 (iscorite). J Solid State Chem 60:107–114

    Article  Google Scholar 

  39. van Aken PA, Miehe G, Woodland AB, Angel RJ (2005) Crystal structure and cation distribution in Fe7SiO10 (“Iscorite”). Eur J Miner 17:723–731

    Article  Google Scholar 

  40. Doh CH, Park CW, Shin HM, Kim DH, Chung YD, Moon SI, Jin BS, Kim HS, Veluchamy A (2008) A new SiO/C anode composition for lithium-ion battery. J Power Sources 179:367–370

    Article  Google Scholar 

  41. Guo B, Shu J, Wang Z, Yang H, Shi L, Liu Y, Chen L (2008) Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries. Electrochem Commun 10:1876–1878

    Article  Google Scholar 

  42. Wang J, Zhao H, He J, Wang C, Wang J (2011) Nano-sized SiOx/C composite anode for lithium ion batteries. J Power Sources 196:4811–4815

    Article  Google Scholar 

  43. Veluchamy A, Doh CH, Kim DH, Lee JH, Lee DJ, Ha KH, Shin HM, Jin BS, Kim HS, Moon SI, Park CW (2009) Improvement of cycle behaviour of SiO/C anode composite by thermochemically generated Li4SiO4 inert phase for lithium batteries. J Power Sources 188:574–577

    Article  Google Scholar 

  44. Nara H, Yokoshima T, Otaki M, Momma T, Osaka T (2013) Structural analysis of highly-durable Si-O-C composite anode prepared by electrodeposition for lithium secondary batteries. Electrochim Acta 110:403–410

    Article  Google Scholar 

  45. Morita T, Takami N (2006) Nano Si cluster-SiOx-C composite material as high-capacity anode material for rechargeable lithium batteries. J Electrochem Soc 153:A425–A430

    Article  Google Scholar 

  46. Liu X, Zheng MC, Xie K (2011) Mechanism of lithium storage in Si–O–C composite anodes. J Power Sources 196:10667–10672

    Article  Google Scholar 

  47. Boultif A, Louër D (1991) Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method. J Appl Cryst 24:987–993

    Article  Google Scholar 

  48. Tranqui D, Shannon RD, Chen HY, Iijima S, Baur WH (1979) Crystal structure of ordered Li4SiO4. Acta Crystallogr B 35:2479–2487

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by NSFC Grant supported through NSFC Committee of China (Nos. 51172077 & 51372089), the Foundation supported through the Science and Technology Bureau of Guangdong Government (No. S2011020000521).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanming Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, D., Geng, X., Zhao, Y. et al. Phase relations of Li2O–FeO–SiO2 ternary system and electrochemical properties of Li x Si y O z compounds. J Mater Sci 51, 6452–6463 (2016). https://doi.org/10.1007/s10853-016-9943-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9943-2

Keywords

Navigation