Skip to main content
Log in

Coarsening Kinetics and Morphological Evolution in a Two-Phase Titanium Alloy During Heat Treatment

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effects of alpha/beta heat treatment on microstructure evolution of Ti-17 alloy with a lamellar colony structure are established. Heat treatment experiments are conducted at 1103 or 1063 K for times ranging from 10 min to 8 h. The main features of microstructure evolution during heat treatment comprise static globularization and coarsening of primary alpha phase. Such behaviors can be accelerated by higher heat treatment temperature. Furthermore, globularization and coarsening behaviors show a faster rate at higher prestrain. In order to better understand the microstructure evolution of Ti-17 alloy during alpha/beta heat treatment, static globularization and coarsening behaviors are modeled in the theoretical frame of the Johnson-Mehl-Avarmi-Kolmogorov (JMAK) and Lifshitz-Slyozov-Wagner (LSW) theories, respectively. The JMAK and LSW kinetics parameters are derived under different experimental conditions. Agreements between measurements and predictions are found, indicating that the JMAK and LSW theories can be used to predict and trace static globularization and coarsening processes of Ti-17 alloy during alpha/beta heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.B. Boyer, An Overview on the Use of Titanium in the Aerospace Industry, Mater. Sci. Eng. A, 1996, 213, p 103–114

    Article  Google Scholar 

  2. S. Fréour, D. Gloaguen, M. François, and R. Guillén, Application of Inverse Models and XRD Analysis to the Determination of Ti-17 β-Phase Coefficient of Thermal Expansion, Scripta Mater., 2006, 54, p 1475–1478

    Article  Google Scholar 

  3. J.D.C. Teixeira, B. Appolaire, E. Aeby-Gautier, S. Denis, G. Cailletaud, and N. Späth, Transformation Kinetics and Microstructure of Ti17 Titanium Alloy During Continuous Cooling, Mater. Sci. Eng. A, 2007, 448, p 135–145

    Article  Google Scholar 

  4. F. Bruneseaux, E. Aeby-Gautier, G. Geandier, J.D.C. Teixeira, B. Appolaire, P. Weisbecker, and A. Mauro, In Situ Characterizations of Phase Transformations Kinetics in the Ti17 Titanium Alloy by Electrical Resistivity and High Temperature Synchrotron X-ray Diffraction, Mater. Sci. Eng. A, 2008, 476, p 60–68

    Article  Google Scholar 

  5. C.E. Shamblen, Minimizing Beta Flecks in the Ti-17 Alloy, Metall. Mater. Trans. B, 1997, 28, p 899–903

    Article  Google Scholar 

  6. K.X. Wang, W.D. Zeng, Y.Q. Zhao, Y.J. Lai, and Y.G. Zhuo, Dynamic Globularization Kinetics During Hot Working of Ti-17 Alloy with Initial Lamellar Microstructure, Mater. Sci. Eng. A, 2010, 527, p 2559–2566

    Article  Google Scholar 

  7. K.X. Wang, W.D. Zeng, Y.Q. Zhao, Y.T. Shao, and Y.G. Zhuo, Prediction of Dynamic Globularization of Ti-17 Titanium Alloy with Initial Lamellar Microstructure During Hot Compression, Mater. Sci. Eng. A, 2010, 527, p 6193–6199

    Article  Google Scholar 

  8. X. Ma, W.D. Zeng, Y. Sun, K.X. Wang, Y.J. Lai, and Y.G. Zhuo, Modeling Constitutive Relationship of Ti17 Titanium Alloy with Lamellar Starting Microstructure, Mater. Sci. Eng. A, 2012, 538, p 182–189

    Article  Google Scholar 

  9. S.L. Semiatin, S.L. Knisley, P.N. Fagin, F. Zhang, and D.R. Barker, Microstructure Evolution During alpha-Beta Heat Treatment of Ti-6Al-4V, Metall. Mater. Trans. A, 2003, 34, p 2377–2386

    Article  Google Scholar 

  10. N. Stefansson, S.L. Semiatin, and D. Eylon, The Kinetics of Static Globularization of Ti-6Al-4V, Metall. Mater. Trans. A, 2002, 33, p 3527–3534

    Article  Google Scholar 

  11. N. Stefansson and S.L. Semiatin, Mechanisms of Globularization of Ti-6Al-4V During Static Heat Treatment, Metall. Mater. Trans. A, 2003, 34, p 691–698

    Article  Google Scholar 

  12. C.H. Park, J.W. Won, J.W. Park, S.L. Semiatin, and C.S. Lee, Mechanisms and Kinetics of Static spheRoidization of Hot-Worked Ti-6Al-2Sn-4Zr-2Mo-0.1Si with a Lamellar Microstructure, Metall. Mater. Trans. A, 2012, 43, p 977–985

    Article  Google Scholar 

  13. X.G. Fan, H. Yang, S.L. Yan, P.F. Gao, and J.H. Zhou, Mechanism and Kinetics of Static Globularization in TA15 Titanium Alloy with Transformed Structure, J. Alloys Compd., 2012, 533, p 1–8

    Article  Google Scholar 

  14. S.L. Semiatin, T.M. Lehner, J.D. Miller, R.D. Doherty, and D.U. Furrer, Alpha/Beta Heat Treatment of a Titanium Alloy with a Nonuniform Microstructure, Metall. Mater. Trans. A, 2007, 38, p 910–921

    Article  Google Scholar 

  15. S. Zhu, H. Yang, L.G. Guo, and X.G. Fan, Effect of Cooling Rate on Microstructure Evolution During α/β Heat Treatment of TA15 Titanium Alloy, Mater. Charact., 2012, 70, p 101–110

    Article  Google Scholar 

  16. S.L. Semiatin, B.C. Kirby, and G.A. Salishchev, Coarsening Behavior of an Alpha-Beta Titanium Alloy, Metall. Mater. Trans. A, 2004, 35, p 2809–2819

    Article  Google Scholar 

  17. G. Grewal and S. Ankem, Particle Coarsening Behavior of α-β Titanium Alloys, Metall. Trans. A, 1990, 21, p 1645–1654

    Article  Google Scholar 

  18. J.W. Xu, W.D. Zeng, Z.Q. Jia, X. Sun, and J.H. Zhou, Static Globularization Kinetics for Ti-17 Alloy With Initial Lamellar Microstructure, J. Alloys Compd., 2014, 603, p 239–247

    Article  Google Scholar 

  19. K. Wang, W.D. Zeng, Y.T. Shao, Y.Q. Zhao, and Y.G. Zhou, Quantification of Microstructural Features in Titanium Alloys Based on Stereology, Rare Metal Mater. Eng., 2009, 38, p 398–403

    Google Scholar 

  20. X. Ma, W.D. Zeng, F. Tian, and Y.G. Zhou, The Kinetics of Dynamic Globularization During Hot Working of a Two Phase Titanium Alloy with Starting Lamellar Microstructure, Mater. Sci. Eng. A, 2012, 548, p 6–11

    Article  Google Scholar 

  21. J.S. Kim, J.H. Kim, Y.T. Lee, C.G. Park, and C.S. Lee, Microstructural Analysis on Boundary Sliding and Its Accommodation Mode During Superplastic Deformation of Ti-6Al-4V Alloy, Mater. Sci. Eng. A, 1999, 263, p 272–280

    Article  Google Scholar 

  22. S.L. Semiatin, M.W. Corbett, P.N. Fang, G.A. Salishchev, and C.S. Lee, Dynamic-Coarsening Behavior of an α/β Titanium Alloy, Metall. Mater. Trans. A, 2006, 37, p 1125–1136

    Article  Google Scholar 

  23. S.L. Semiatin, I.M. Sukonnik, and V. Seetharaman, An Analysis of Static Recrystallization During Continuous, Rapid Heat Treatment, Metall. Mater. Trans. A, 1996, 27, p 2051–2053

    Article  Google Scholar 

  24. V. Erukhimovitch and J. Baram, Discussion of an Analysis of Static Recrystallization During Continuous, Rapid Heat Treatment, Metall. Mater. Trans. A, 1997, 28, p 2763–2764

    Article  Google Scholar 

  25. Y.B. Chun, S.L. Semiatin, and S.K. Hwang, Monte Carlo Modeling of Microstructure Evolution During the Static Recrystallization of Cold-Rolled, Commercial-Purity Titanium, Acta Mater., 2006, 54, p 3673–3689

    Article  Google Scholar 

  26. I.M. Lifshitz and V.V. Slyozov, The Kinetics of Precipitation from Supersaturated Solid Solutions, J. Phys. Chem. Solids, 1961, 19, p 35–50

    Article  Google Scholar 

  27. C. Wagner, Theorie der alterung von niederschlägen durch umlösen, Z. Elektrochem., 1961, 65, p 581–591

    Google Scholar 

  28. A.J. Ardell, The Effect of Volume Fraction on Particle Coarsening: Theoretical Considerations, Acta Metall., 1972, 20, p 61–71

    Article  Google Scholar 

  29. G. Grewal and S. Ankem, Isothermal Particle Growth in Two-Phase Titanium Alloys, Metall. Trans. A, 1989, 20, p 39–54

    Article  Google Scholar 

  30. Y.L. Tian and R.W. Kraft, Kinetics of Pearlite Spheroidizations, Metall. Trans. A, 1987, 18, p 1403–1414

    Article  Google Scholar 

  31. R. Racek and G. Lesoult, Ripening of Sn-Cd Eutectic Microstructures, J. Cryst. Growth, 1972, 16, p 223–226

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the financial supports from the Research Fund for the Doctoral Program of Higher Education of China (20136102110034) and the Program for New Century Excellent Talents in University (NCET-07-0696).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Zeng, W., Jia, Z. et al. Coarsening Kinetics and Morphological Evolution in a Two-Phase Titanium Alloy During Heat Treatment. J. of Materi Eng and Perform 25, 734–743 (2016). https://doi.org/10.1007/s11665-016-1951-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-1951-5

Keywords

Navigation