Skip to main content
Log in

Fracture Behavior of Annealed and Equal Channel Angular Pressed Copper: An Experimental Study

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this research, the ductile fracture of ultra-fine-grained copper was investigated. Ultra-fine-grained copper was produced using equal channel angular pressing process. During this process, the average grain size of the copper specimens decreases. Experiments have shown that stress state has significant effect on fracture behavior and should be included in the constitutive models. Therefore, the ductile failure was analyzed here by focusing on its relationship with the effect of hydrostatic pressure and Lode angle parameter. Tensile tests were performed on smooth and notched round bar specimens as well as doubly grooved samples. Moreover, the fracture surfaces were investigated by a scanning electron microscope. The experimental results reveal that the stress triaxiality and Lode angle parameter have a remarkable effect on the ductile fracture of the ECAPed specimens. However, the effect of stress triaxiality on ductility reduction is more significant than the effect of the Lode angle parameter. Also, the experimental results show the transition from the tensile ductile fracture to shear fracture in the ECAPed specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. M. Morales, E. Xuriguera, M. Martínez, J.A. Padilla, J. Molera, N. Ferrer, M. Segarra, and F. Espiell, Mechanical Characterization of Copper-Copper Wires Joined by Friction Welding Using Instrumented Indentation Technique, J. Mater. Eng. Perform., 2014, 23, p 3941–3948

    CAS  Google Scholar 

  2. M.J. Zehetbauer and R.Z. Valiev, Nanomaterials by Severe Plastic Deformation, Wiley, Hoboken, 2006, p 12–90

    Google Scholar 

  3. S. Khalilpourazary, M. Zadshakoyan, and S.H. Hoseini, Fatigue Life Improvement of Copper Processed by Equal Channel Angular Pressing, Exp. Technol. 2019, p 1–8

  4. C. Wang, D. Song, J. Fan, and F. Li, Microstructure Evolution and Microhardness Distribution of Copper Processed Using Multiple Passes of Elliptical Cross-Sectional Spiral Equal-Channel Extrusion, J. Mater. Eng. Perform., 2018, 27, p 6665–6675

    CAS  Google Scholar 

  5. X. Wang, P. Li, and K. Xue, An Analysis on Microstructure and Grain Size of Molybdenum Powder Material Processed by Equal Channel Angular Pressing, J. Mater. Eng. Perform., 2015, 24, p 4510–4517

    CAS  Google Scholar 

  6. Y. Xiong, T. He, P. Li, L. Chen, F. Ren, and A.A. Volinsky, Microstructure and Mechanical Properties of Granular Pearlite Steel After Equal Channel Angular Pressing, J. Mater. Eng. Perform., 2015, 24, p 2665–2669

    CAS  Google Scholar 

  7. V.M. Segal, Materials Processing by Simple Shear, Mat. Sci. Eng. A-Struct., 1995, 197, p 157–164

    Google Scholar 

  8. R.Z. Valiev, E.V. Kozlov, Y.F. Ivanov, J. Lian, A.A. Nazarov, and B. Baudelet, Deformation Behavior of Ultra-Fine-Grained Copper, Acta Metall. Mater., 1994, 42, p 2467–2475

    CAS  Google Scholar 

  9. Y.J. Li, R. Kapoor, J.T. Wang, and W. Blum, Structural Stability of Ultrafine-Grained Copper, Scripta Mater., 2008, 58, p 53–56

    CAS  Google Scholar 

  10. H. Miyamoto, J. Fushimi, T. Mimaki, A. Vinogradov, and S. Hashimoto, The Effect of the Initial Orientation on Microstructure Development of Copper Single Crystals Subjected to Equal-Channel Angular Pressing, Mater. Sci. Forum, 2006, 503, p 799–804

    Google Scholar 

  11. L. Kommel, I. Hussainova, and O. Volobueva, Microstructure and Properties Development of Copper During Severe Plastic Deformation, Mater. Des., 2007, 28, p 2121–2128

    CAS  Google Scholar 

  12. R.J. Hellmig, M. Janecek, B. Hadzima, O.V. Gendelman, M. Shapiro, X. Molodova, A. Springer, and Y. Estrin, A Portrait of Copper Processed by Equal Channel Angular Pressing, Mater. Trans., 2008, 49, p 31–37

    CAS  Google Scholar 

  13. P.K. Jayakumar, K. Balasubramanian, and G.R. Tagore, Structure Property Correlation in Ultrafine Grained Copper Processed by Equal Channel Angular Processing, Eurasian Chemico-Technological J., 2011, 13, p 59–65

    CAS  Google Scholar 

  14. J.R. Groza, J.F. Shackelford, E.J. Lavernia, and M.T. Powers, Materials Processing Handbook, CRC Press, Boca Raton, 2007, p 1322–1323

    Google Scholar 

  15. X.X. Xu, F.L. Nie, J.X. Zhang, W. Zheng, Y.F. Zheng, C. Hu, and G. Yang, Corrosion and Ion Release Behavior of Ultra-Fine Grained Bulk Pure Copper Fabricated by ECAP in Hanks Solution as Potential Biomaterial for Contraception, Mater. Lett., 2010, 64, p 524–527

    CAS  Google Scholar 

  16. H. Marashi, D.M. Jafarlou, A.A. Sarahan, and N.A. Mardi, Employing Severe Plastic Deformation to the Processing of Electrical Discharge Machining Electrodes, Precis. Eng., 2016, 46, p 309–322

    Google Scholar 

  17. T. Ly, T. Thi, Equal Channel Angular Pessing (ECAP) Process of Copper Electrodes for Resistance Spot Brazing Application, Doctoral dissertation, Universiti Sains Malaysia, 2007

  18. O. Irfan, S. Mukras, F. Al-Mufadi, and F. Djavanroodi, Surface Modeling of Nanostructured Copper Subjected to Erosion-Corrosion, Metals, 2017, 7, p 155

    Google Scholar 

  19. W.M. Garrison, Jr, and N.R. Moody, Ductile Fracture, J. Phys. Chem. Solids, 1987, 48, p 1035–1074

    CAS  Google Scholar 

  20. M. Besterci, K. Sülleiová, and T. Kvačkaj, Fracture Micromechanisms of Cu Nano-Materials Prepared by ECAP, Kovove Mater., 2008, 46, p 309–311

    CAS  Google Scholar 

  21. Y.G. Kim, B. Hwang, S. Lee, C.W. Lee, and D.H. Shin, Dynamic Deformation and Fracture Behavior of Ultra-Fine-Grained Pure Copper Fabricated by Equal Channel Angular Pressing, Mat. Sci. Eng. A., 2009, 504, p 163–168

    Google Scholar 

  22. P.W. Bridgman, Studies in Large Plastic Flow and Fracture, McGraw-Hill, New York, 1952, p 80–92

    Google Scholar 

  23. W. Hancock and A.C. Mackenzie, On the Mechanisms of Ductile Failure in High-Strength Steels Subjected to Multi-Axial Stress-States, J. Mech. Phys. Solids, 1976, 24, p 147–160

    Google Scholar 

  24. G. Le Roy, J.D. Embury, G. Edwards, and M.F. Ashby, A Model of Ductile Fracture Based on the Nucleation and Growth of Voids, Acta Metall., 1981, 29, p 1509–1522

    Google Scholar 

  25. G.R. Johnson and W.H. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech., 1985, 21, p 31–48

    Google Scholar 

  26. Y. Bai and T. Wierzbicki, A New Model of Metal Plasticity and Fracture with Pressure and Lode Dependence, Int J Plasticity., 2008, 24, p 1071–1096

    CAS  Google Scholar 

  27. I. Barsoum and J. Faleskog, Rupture Mechanisms in Combined Tension and Shear Micromechanics, Int. J. Solids Struct., 2007, 44, p 1768–1786

    CAS  Google Scholar 

  28. I. Barsoum and J. Faleskog, Micromechanical Analysis on the Influence of the Lode Parameter on Void Growth and Coalescence, Int. J. Solids Struct., 2011, 48, p 925–938

    Google Scholar 

  29. M. Dunand and D. Mohr, Hybrid Experimental-Numerical Analysis of Basic Ductile Fracture Experiments for Sheet Metals, Int. J. Solids Struct., 2010, 47, p 1130–1143

    Google Scholar 

  30. Y. Bai and T. Wierzbicki, A Comparative Study of Three Groups of Ductile Fracture Loci in the 3D Space, Eng. Fract. Mech., 2015, 135, p 147–167

    Google Scholar 

  31. T. Sjöberg, S. Marth, J. Kajberg, and H.A. Häggblad, Experimental Characterisation of the Evolution of Triaxiality Stress State for Sheet Metal Materials, Eur. J. Mech. A-Solid., 2017, 66, p 279–286

    Google Scholar 

  32. C. Defaisse, M. Mazière, L. Marcin, and J. Besson, Ductile Fracture of an Ultra-High Strength Steel Under Low to Moderate Stress Triaxiality, Eng. Fract. Mech., 2018, 194, p 301–318

    Google Scholar 

  33. G. Mirone and D. Corallo, A Local Viewpoint for Evaluating the Influence of Stress Triaxiality and Lode Angle on Ductile Failure and Hardening, Int. J. Plasticity., 2010, 26, p 348–371

    CAS  Google Scholar 

  34. A.M. Beese and D. Mohr, Effect of Stress Triaxiality and Lode Angle on the Kinetics of Strain Induced Austenite to Martensite Transformation, Acta Mater., 2011, 59, p 2589–2600

    CAS  Google Scholar 

  35. Jr. C.M. Adams, Effective Ductility in Castings and Weldments, pp 179–97 of Ductility, American Society for Metals, Ohio (1968)

  36. M. Goto, S.Z. Han, J. Kitamura, T. Yakushiji, J.H. Ahn, S.S. Kim, M. Baba, T. Yamamoto, and J. Lee, S-N Plots and Related Phenomena of Ultrafine Grained Copper with Different Stages of Microstructural Evolution, Int. J. Fatigue, 2015, 73, p 98–109

    Google Scholar 

  37. F. Dalla Torre, R. Lapovok, J. Sandlin, P.F. Thomson, C.H.J. Davies, and E.V. Pereloma, Microstructures and Properties of Copper Processed by Equal Channel Angular Extrusion for 1–16 Passes, Acta Mater., 2004, 52, p 4819–4832

    CAS  Google Scholar 

  38. D.A. Hughes and N. Hansen, Microstructure and Strength of Nickel at Large Strains, Acta Mater., 2000, 48, p 2985–3004

    CAS  Google Scholar 

  39. H.M. Westergaard, On the Resistance of Ductile Materials to Combined Stresses in Two or Three Directions Perpendicular to One Another, J. Franklin I., 1920, 189, p 627–640

    Google Scholar 

  40. L. Xue, Damage Accumulation and Fracture Initiation in Uncracked Ductile Solids Subject to Triaxial Loading, Int. J. Solids Struct., 2007, 44, p 5163–5181

    CAS  Google Scholar 

  41. ASTM BS EN 15079, Copper and copper alloys: Analysis by spark optical emission spectrometry (S-OES), BSI Standards Publications (2015)

  42. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon, The Shearing Characteristics Associated with Equal-Channel Angular Pressing, Mater. Sci. Eng. A-Struct., 1998, 257, p 328–332

    Google Scholar 

  43. ASTM E92-82, Standard Test Method for Vickers Hardness of Metallic Materials, ASTM International (2003)

  44. L.R. Saitova, H.W. Höppel, M. Göken, I.P. Semenova, G.I. Raab, and R.Z. Valiev, Fatigue Behavior of Ultrafine-Grained Ti–6Al–4 V ‘ELI’alloy for Medical Applications, Mater. Sci. Eng., A, 2009, 503, p 145–147

    Google Scholar 

  45. ASTM E8, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International (2004)

  46. J. Xu, J. Li, D. Shan, and B. Guo, Strain Softening Mechanism at Meso Scale During micro-compression in an Ultrafine-Grained Pure Copper, AIP Adv., 2015, 5, p 097147

    Google Scholar 

  47. A. Mishra, B.K. Kad, F. Gregori, and M.A. Meyers, Microstructural Evolution in Copper Subjected to Severe Plastic Deformation: Experiments and Analysis, Acta Mater., 2007, 55, p 13–28

    CAS  Google Scholar 

  48. E.P. Degarmo, J.T. Black, and R.A. Kosher, Materials and Processes in Manufacturing, Wiley, Hoboken, 2003

    Google Scholar 

  49. J.R. Davis, ASM Specialty Handbook: Copper and Copper Alloys, ASM International, Ohio, 2001

    Google Scholar 

  50. K. Mills, Fractography, ASM International, West Conshohocken, 1987, p 12–22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zadshakoyan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoseini, S.H., Khalilpourazary, S. & Zadshakoyan, M. Fracture Behavior of Annealed and Equal Channel Angular Pressed Copper: An Experimental Study. J. of Materi Eng and Perform 29, 975–986 (2020). https://doi.org/10.1007/s11665-020-04598-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04598-z

Keywords

Navigation