Skip to main content
Log in

Localized Corrosion Behavior of Al-Si-Mg Alloys Used for Fabrication of Aluminum Matrix Composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The relationship between microstructure and localized corrosion behavior in neutral aerated chloride solutions was investigated with SEM/EDAX, conventional electrochemical techniques, and with scanning Kelvin probe force microscopy (SKPFM) for two custom-made alloys with Si/Mg molar ratios of 0.12 and 0.49. In this order, Al3Fe, Al3Mg2, and Mg2Si intermetallics were identified in the first alloy and Al(FeMn)Si and Mg2Si particles in the second one. Anodic polarization curves and corrosion morphology showed that the alloy with higher Si/Mg molar ratio exhibited a better corrosion performance and evidence was shown that it had a more corrosion-resistant passive film. The corrosion process for both alloys in aerated 0.1 M NaCl solutions was localized around the Fe-rich intermetallics. They acted as local cathodes and produced dissolution of the aluminum matrix surrounding such particles. Mg2Si and Al3Mg2 exhibited anodic behavior. SKPFM was successfully used to map the Volta potential distribution of main intermetallics. The localized corrosion behavior was correlated with a large Volta potential difference between the Fe-rich intermetallics and the matrix. After immersion in the chloride solution, such Volta potential difference decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S.S. Kumar, V.S. Bai, and T. Rajasekharan, Aluminum Matrix Composites by Pressureless Infiltration: The Metallurgical and Physical Properties, J. Phys. D Appl. Phys., 2008, 41, p 105403–105408

    Article  Google Scholar 

  2. S. Ren, X. He, X. Qu, I.S. Humail, and Y. Li, Effect of Si Addition to Al-8Mg Alloy on the Microstructure and Thermo-Physical Properties of SiCp/Al Composites Prepared by Pressureless Infiltration, Mater. Sci. Eng. B, 2007, 138, p 263–270

    Article  CAS  Google Scholar 

  3. M.I. Pech-Canul, R.N. Katz, and M.M. Makhlouf, Optimum Conditions for Pressureless Infiltration of SiCp Preforms by Aluminum Alloys, J. Mater. Process. Technol., 2000, 108, p 68–77

    Article  CAS  Google Scholar 

  4. J. Aguilar-Martínez, M.I. Pech-Canul, M. Rodríguez-Reyes, and J.L. de la Peña, Effect of Processing Parameters on the Degree of Infiltration of SiCp Preforms by Al-Si-Mg Alloys, Mater. Lett., 2003, 57, p 4332–4335

    Article  Google Scholar 

  5. M.I. Pech-Canul, F. Ortega-Celaya, and M.A. Pech-Canul, Influence of SiO2 in SiCp on the Microstructure and Impact Strength of Al/SiCp Composites Fabricated by Pressureless Infiltration, Mech. Compos. Mater., 2006, 42, p 283–296

    Article  CAS  Google Scholar 

  6. M.I. Pech-Canul, R. Escalera-Lozano, M.A. Pech-Canul, J.C. Rendon-Angeles, and J. Lopez-Cuevas, Degradation Processes in Al/SiCp/MgAl2O4 Composites Prepared from Recycled Aluminum with Fly Ash and Rice Hull Ash, Mater. Corros., 2007, 58, p 833–840

    Article  CAS  Google Scholar 

  7. R. Escalera-Lozano, M.A. Pech-Canul, M.I. Pech-Canul, and P. Quintana, Corrosion Characteristics of Al-Si-Mg/SiCp Composites with Varying Si/Mg Molar Ratio in Neutral Chloride Solutions, Mater. Corros., 2009, 60, p 283–689

    Article  Google Scholar 

  8. M. Montoya-Dávila, M.I. Pech-Canul, and M.A. Pech-Canul, Effect of SiCp Multimodal Distribution on Pitting Behavior of Al/SiCp Composites Prepared by Reactive Infiltration, Powder Technol., 2009, 195, p 196–202

    Article  Google Scholar 

  9. P.P. Trzaskoma, E. McCafferty, and C.R. Crowe, Corrosion Behavior of SiC/Al Metal Matrix Composites, J. Electrochem. Soc., 1983, 130, p 1804–1809

    Article  CAS  Google Scholar 

  10. L.H. Hihara, Corrosion of Aluminum-Matrix Composites, Corros. Rev., 1997, 15, p 361–386

    Article  CAS  Google Scholar 

  11. A. Pardo, M.C. Merino, F. Viejo, M. Carboneras, and R. Arrabal, Influence of Reinforcement Proportion and Matrix Composition on Pitting Corrosion Behavior of Cast Aluminum Matrix Composites (A3xx.x/SiCp), Corros. Sci., 2005, 47, p 1750–1764

    Article  CAS  Google Scholar 

  12. M.A. Pech-Canul, M.I. Pech-Canul, M. Echeverría, E.E. Coral-Escobar, and M. Montoya-Dávila, Effect of Alloying Elements in the Electrochemical Behavior of Al-Si-Mg Alloys in Aqueous Solutions, Supplemental Proceedings, Vol. 1 (Materials Processing and Properties), TMS (The Minerals, Metals & Materials Society), Warrendale, PA, 2010, p 209–214

  13. E.E. Coral-Escobar, M.A. Pech-Canul, and M.I. Pech-Canul, Electrochemical Behavior of Passive Films on Al-17Si-14Mg (wt.%) Alloy in Near-Neutral Solutions, J. Solid State Electrochem., 2010, 14, p 803–810

    Article  CAS  Google Scholar 

  14. M.C. Reboul and B. Baroux, Metallurgical Aspects of Corrosion Resistance of Aluminum Alloys, Mater. Corros., 2011, 62, p 215–233

    Article  CAS  Google Scholar 

  15. A. Davoodi, J. Pan, C. Leygraf, R. Parvizi, and S. Norgren, An Insight into the Influence of Morphological and Compositional Heterogeneity of an Intermetallic Particle on Aluminum Alloy Corrosion Initiation, Mater. Corros., 2013, 64, p 195–198

    Article  CAS  Google Scholar 

  16. N. Birbilis and R.G. Buchheit, Electrochemical Characteristics of Intermetallic Phases in Aluminum Alloys, J. Electrochem. Soc., 2005, 152, p B140–B151

    Article  CAS  Google Scholar 

  17. N. Birbilis and R.G. Buchheit, Investigation and Discussion of Electrochemical Characteristics of Intermetallic Phases Common to Aluminum Alloys as a Function of pH, J. Electrochem. Soc., 2008, 155, p C117–C126

    Article  CAS  Google Scholar 

  18. K. Nişancioğlu, K.Y. Davanger, and Ø. Strandmyr, Cathodic Behavior of Impure Aluminum in Aqueous Media, J. Electrochem. Soc., 1981, 128, p 1523–1526

    Article  Google Scholar 

  19. K. Nişancioğlu, Electrochemical Behavior of Aluminum-Base Intermetallics Containing Iron, J. Electrochem. Soc., 1990, 137, p 69–77

    Article  Google Scholar 

  20. J.O. Park, C.H. Paik, Y.H. Huang, and R.C. Alkire, Influence of Fe-Rich Intermetallic Inclusions on Pit Initiation on Aluminum Alloys in Aerated NaCl, J. Electrochem. Soc., 1999, 146, p 517–523

    Article  CAS  Google Scholar 

  21. O. Seri and K. Furumata, Effect of Al-Fe-Si Intermetallic Compound Phases on Initiation and Propagation of Pitting Attacks for Aluminum 1100, Mater. Corros., 2002, 53, p 111–120

    Article  CAS  Google Scholar 

  22. R. Ambat, A.J. Davenport, G.F. Scamans, and A. Afseth, Effect of Iron-Containing Intermetallic Particles on the Corrosion Behavior of Aluminum Alloys, Corros. Sci., 2006, 48, p 3455–3471

    Article  CAS  Google Scholar 

  23. V. Guillaumin and G. Mankowski, Localized Corrosion of 2024 T351 Aluminum Alloy in Chloride Media, Corros. Sci., 1999, 41, p 421–438

    Article  CAS  Google Scholar 

  24. R.G. Buchheit, R.P. Grant, P.F. Hlava, B. Mckenzie, and G.L. Zender, Local Dissolution Phenomena Associated with S Phase (Al2CuMg) Particles in Aluminum Alloy 2024-T3, J. Electrochem. Soc., 1997, 144, p 2621–2628

    Article  CAS  Google Scholar 

  25. J. Wloka and S. Virtanen, Detection of Nanoscale η-MgZn2 Phase Dissolution from an Al-Zn-Mg-Cu Alloy by Electrochemical Microtransients, Surf. Interface Anal., 2008, 40, p 1219–1225

    Article  CAS  Google Scholar 

  26. G.O. Ilevbare, O. Schneider, R.G. Kelly, and J.R. Scully, In-Situ Confocal Laser Scanning Microscopy of AA 2024 T3 Corrosion Metrology, J. Electrochem. Soc., 2004, 151, p B453–B464

    Article  CAS  Google Scholar 

  27. A. Davoodi, J. Pan, C. Leygraf, and S. Norgren, Integrated AFM and SECM for In Situ Studies of Localized Corrosion of Al Alloys, Electrochim. Acta, 2007, 52, p 7697–7705

    Article  CAS  Google Scholar 

  28. A. Davoodi, J. Pan, C. Leygraf, and S. Norgren, The Role of Intermetallic Particles in Localized Corrosion of an Aluminum Alloy Studied by SFPFM and Integrated AFM/SECM, J. Electrochem. Soc., 2008, 155, p C211–C218

    Article  CAS  Google Scholar 

  29. M.B. Jensen, A. Guerard, D.E. Tallman, and G.P. Bierwagen, Studies of Electron Transfer at Aluminum Alloy Surfaces by Scanning Electrochemical Microscopy, J. Electrochem. Soc., 2008, 155, p C324–C332

    Article  CAS  Google Scholar 

  30. C. Senöz, A. Maljusch, M. Rohwerder, and W. Schuhmann, SECM and SKPFM Studies of the Local Corrosion Mechanism of Al alloys—A Pathway to an Integrated SKP-SECM System, Electroanalysis, 2012, 24, p 239–245

    Article  Google Scholar 

  31. P. Schmutz and G.S. Frankel, Characterization of AA2024-T3 by Scanning Kelvin Probe Force Microscopy, J. Electrochem. Soc., 1998, 145, p 2285–2295

    Article  CAS  Google Scholar 

  32. V. Guillaumin, P. Schmutz, and G.S. Frankel, Characterization of Corrosion Interfaces by the Scanning Kelvin Probe Force Microscopy Technique, J. Electrochem. Soc., 2001, 148, p B163–B173

    Article  CAS  Google Scholar 

  33. M. Rohwerder and F. Turcu, High-Resolution Kelvin Probe Microscopy in Corrosion Science: Scanning Kelvin Probe Force Microscopy (SKPFM) Versus Classical Kelvin Probe (SKP), Electrochim. Acta, 2007, 53, p 290–299

    Article  CAS  Google Scholar 

  34. J.H.W. de Wit, Local Potential Measurements with the SKPFM on Aluminum Alloys, Electrochim. Acta, 2004, 49, p 2841–2850

    Article  Google Scholar 

  35. F.N. Afshar, J.H.W. de Wit, H. Terryn, and J.M.C. Mol, Scanning Kelvin Probe Force Microscopy as a Means of Predicting the Electrochemical Characteristics of the Surface of a Modified AA4xxx/AA3xxx (Al Alloys) Brazing Sheet, Electrochim. Acta, 2013, 88, p 330–339

    Article  CAS  Google Scholar 

  36. M.A. Pech-Canul, R. Giridharagopal, M.I. Pech-Canul, and E.E. Coral-Escobar, Corrosion Characteristics of an Al-1.78%Si-13.29%Mg Alloy in Chloride Solutions, ICAA13: 13th International Conference on Aluminum Alloys, H. Weiland, A.D. Rollett, and W.A. Cassada, Eds., John Wiley & Sons, Inc., New York, p 417–423

  37. K.A. Yasakau, M.L. Zheludkevich, S.V. Lamaka, and M.G.S. Ferreira, Role of Intermetallic Phases in Localized Corrosion of AA5083, Electrochim. Acta, 2007, 52, p 7651–7659

    Article  CAS  Google Scholar 

  38. F. Eckermann, T. Suter, P.J. Uggowitzer, A. Afseth, M. Stampanoni, F. Marone, and P. Schmutz, In Situ Microtomographically Monitored and Electrochemically Controlled Corrosion Initiation and Propagation in AlMgSi Alloy AA6016, J. Electrochem. Soc., 2009, 156, p C1–C7

    Article  CAS  Google Scholar 

  39. Ch. Blanc, Y. Roques, and G. Mankowski, Application of Phase Shifting Interferometric Microscopy to Studies of the Behavior of Coarse Intermetallic Particles in 6056 Aluminum Alloy, Corros. Sci., 1998, 40, p 1019–1035

    Article  CAS  Google Scholar 

  40. P. Premendra, B.S. Tanem, J.M.C. Mol, H. Terryn, J.H. de Wit, and L. Katgerman, A Combined TEM and SKPFM Investigation of the Surface Layers on Rolled AA5050 Aluminum Alloy Using Ultra-Microtomy, Surf. Interface Anal., 2008, 40, p 1157–1163

    Article  CAS  Google Scholar 

  41. Z. Ping, L. Qi, Z. Junjun, and C. Zhihai, Volta Potential Analysis of Intermetallics in 7A52 Aluminum Alloy, J. Wuhan Univ. Technol., 2012, 27, p 227–230

    Article  Google Scholar 

  42. W. Zhang, X. Yu, M. Kryzman, T.J. Garosshen, M. Piech, M.R. Jaworowski, and G.S. Zafiris, Use of Scanning Kelvin Probe Force Microscopy to Investigate the Effects of Surface Preparation on Intermetallic Particles in AA7xxx Aluminum Alloys, ECS Trans., 2012, 41, p 107–120

    Google Scholar 

  43. B.S. Tanem, O. Lunder, and O.Ø. Knudsen, Scanning Kelvin Probe Force Microscopy of EN AW-6082 Aluminum Subjected to Chromate-Free Pre-treatment, ICEPAM-International Conference on Environmental Friendly Pretreatment for Aluminum and Other Metals, June 2004 (Oslo, Norway), p 1–4

  44. B.S. Tanem, G. Svenningsen, and J. Mårdalen, Relations Between Sample Preparation and SKPFM Volta Potential Maps on an EN AW-6005 Aluminum Alloy, Corros. Sci., 2005, 47, p 1506–1519

    Article  CAS  Google Scholar 

  45. R. Grilli, M.A. Baker, J.E. Castle, B. Dunn, and J.F. Watts, Localized Corrosion of a 2219 Aluminum Alloy Exposed to a 3.5% NaCl Solution, Corros. Sci., 2010, 52, p 2855–2866

    Article  CAS  Google Scholar 

  46. P. Leblanc and G.S. Frankel, A Study of Corrosion and Pitting Initiation of AA2024-T3 Using Atomic Force Microscopy, J. Electrochem. Soc., 2002, 149, p B239–B247

    Article  CAS  Google Scholar 

  47. P. Premendra, H. Terryn, J.M.C. Mol, J.H. de Wit, and L. Katgerman, A Comparative Electrochemical Study of Commercial and Model Aluminum Alloy (AA5050), Mater. Corros., 2009, 60, p 399–406

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The SKPFM measurements were carried out in the laboratory of Prof. David S. Ginger, the Department of Chemistry, the University of Washington, Seattle, WA, to whom the authors are grateful for providing laboratory facilities and helpful discussions. The authors would like to thank Dr. Obadiah G. Reid (University of Washington) for assistance with setting up the SKPFM instrument, Marbella Echeverría (Cinvestav-Mérida) for technical assistance with the corrosion tests, and D.H. Aguilar (Cinvestav-Mérida) for technical assistance with XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Pech-Canul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pech-Canul, M.A., Giridharagopal, R., Pech-Canul, M.I. et al. Localized Corrosion Behavior of Al-Si-Mg Alloys Used for Fabrication of Aluminum Matrix Composites. J. of Materi Eng and Perform 22, 3922–3932 (2013). https://doi.org/10.1007/s11665-013-0674-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0674-0

Keywords

Navigation