Skip to main content
Log in

Passive 350 GHz Video Imaging Systems for Security Applications

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Passive submillimeter-wave imaging is a concept that has been in the focus of interest as a promising technology for personal security screening for a number of years. In contradiction to established portal-based millimeter-wave scanning techniques, it allows for scanning people from a distance in real time with high throughput and without a distinct inspection procedure. This opens up new possibilities for scanning, which directly address an urgent security need of modern societies: protecting crowds and critical infrastructure from the growing threat of individual terror attacks. Considering the low radiometric contrast of indoor scenes in the submillimeter range, this objective calls for an extremely high detector sensitivity that can only be achieved using cooled detectors. Our approach to this task is a series of passive standoff video cameras for the 350 GHz band that represent an evolving concept and a continuous development since 2007. Arrays of superconducting transition-edge sensors (TES), operated at temperatures below 1 K, are used as radiation detectors. By this means, background limited performance (BLIP) mode is achieved, providing the maximum possible signal to noise ratio. At video rates, this leads to a temperature resolution well below 1 K. The imaging system is completed by reflector optics based on free-form mirrors. For object distances of 5–25 m, a field of view up to 2 m height and a diffraction-limited spatial resolution in the order of 1–2 cm is provided. Opto-mechanical scanning systems are part of the optical setup and capable of frame rates of up to 25 frames per second.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Global people security screening: Technologies, industry & market-2015-2020. market report, Homeland Security Research Corporation (2014).

  2. T.S. Hartwick, D.T. Hodges, D.H. Barker, F.B. Foote, Appl. Optics 15, 1919 (1976). doi:10.1002/bem.20308.

  3. S.I. Alekseev, M.C. Ziskin, Bioelectromagnetics 28, 331 (2007). doi:10. 1002/bem.20308.

  4. R. Appleby, H.B. Wallace, (2007), IEEE Transactions on Antennas and Propagation, vol. 55, pp. 2944–2956 doi:10.1109/TAP.2007.908543.

  5. D.M. Sheen, T.E. Hall, R.H. Severtsen, D.L. McMakin, B.K. Hatchell, P.L.J. Valdez, in Passive Millimeter-Wave Imaging Technology XIII, Proc. of SPIE, vol. 7670, ed. by D.A. Wikner, A.R. Luukanen (2010), Proc. of SPIE, vol. 7670, p. 767008. doi:10.1117/12.852788.

  6. K.B. Cooper, R.J. Dengler, N. Llombart, A. Talukder, A.V. Panangadan, C.S. Peay, I. Mehdi, P.H. Siegel, in Terahertz Physics, Devices, and Systems IV, Proc. of SPIE, vol. 7671, ed. by M. Anwar, N.K. Dhar, T.W. Crowe (2010), Proc. of SPIE, vol. 7671, p. 76710Y. doi:10.1117/12.850395.

  7. D.A. Robertson, S.L. Cassidy, B. Jones, A. Clark, in Passive and Active Millimeter-Wave Imaging XVII, Proc. of SPIE, vol. 9078, ed. by D.A. Wikner, A.R. Luukanen (2014), Proc. of SPIE, vol. 9078, p. 907805. doi:10.1117/12. 2053023.

  8. A. Luukanen, A.J. Miller, E.N. Grossman, in Passive Millimeter-Wave Imaging Technology VIII, Proc. of SPIE, vol. 5789, ed. by R. Appleby, D.A. Wikner (2005), Proc. of SPIE, vol. 5789, pp. 127–134. doi:10.1117/12.608838.

  9. T. May, S. Anders, V. Zakosarenko, M. Starkloff, H.G. Meyer, G. Thorwirth, E. Kreysa, in Terahertz for Military and Security Applications V, Proc. of SPIE, vol. 6549, ed. by J.O. Jensen, H.L. Cui (2007), Proc. of SPIE, vol. 6549, p. 65490D. doi:10.1117/12.720512.

  10. C. Mann, in: Terahertz Physics, Devices, and Systems III, Proc. of SPIE, vol. 7311, ed. by M. Anwar, N.K. Dhar, T.W. Crowe (2009), Proc. of SPIE, vol. 7311, p. 73110Q. doi:10.1117/12.821775.

  11. D. Becker, J. Beall, H.M. Cho, W. Duncan, G. Hilton, R. Horansky, K. Irwin, P. Lowell, M. Niemack, N. Paulter, C. Reintsema, F. Schima, R. Schwall, K.W. Yoon, P. Ade, C. Tucker, S. Dicker, M. Halpern, in Passive Millimeter-Wave Imaging Technology XIII, Proc. of SPIE, vol. 7670, ed. by D.A. Wikner, A.R. Luukanen (2010), Proc. of SPIE, vol. 7670, p. 76700M. doi:10.1117/12.852932.

  12. E. Heinz, T. May, D. Born, G. Zieger, K. Peiselt, V. Zakosarenko, T. Krause, A. Kruger, M. Schulz, F. Bauer, H.G. Meyer, in Passive and Active Millimeter-Wave Imaging XVII, Proc. of SPIE, vol. 9078, ed. by D.A. Wikner, A.R. Luukanen (2014), Proc. of SPIE, vol. 9078, p. 907808. doi:10.1117/12.2054481.

  13. D. Becker, C. Gentry, I. Smirnov, P. Ade, J. Beall, H.M. Cho, S. Dicker, W. Duncan, M. Halpern, G. Hilton, K. Irwin, D. Li, N. Paulter, C. Reintsema, R. Schwall, C. Tucker, in Passive and Active Millimeter-Wave Imaging XVII, Proc. of SPIE, vol. 9078, ed. by D.A. Wikner, A.R. Luukanen (2014), Proc. of SPIE, vol. 9078, p. 907804. doi:10.1117/12.2050712.

  14. A. Luukanen, M. Gronholm, M.M. Leivo, H. Toivanen, A. Rautiainen, J. Varis, in Passive Millimeter-Wave Imaging Technology XV, Proc. of SPIE, vol. 8362, ed. by D.A. Wikner, A.R. Luukanen (2012), Proc. of SPIE, vol. 8362, p. 836209. doi:10.1117/12.924166.

  15. S. Paine, The am atmospheric model, Smithsonian Astrophysical Observatory (2012).

  16. E. Heinz, T. May, D. Born, G. Zieger, A. Bromel, S. Anders, V. Zakosarenko, T. Krause, A. Kruger, M. Schulz, F. Bauer, H.G. Meyer, in Millimetre Wave and Terahertz Sensors and Technology V, Proc. of SPIE, vol. 8544, ed. by N.A. Salmon, E.L. Jacobs (2012), Proc. of SPIE, vol. 8544, p. 854402. doi:10.1117/12.976849.

  17. J.A. Shaw, Am. J. Phys. 81, 33 (2013) 81, 33 (2013). doi:10.1119/1. 4755780.

  18. E. Heinz, T. May, D. Born, G. Zieger, G. Thorwirth, S. Anders, V. Zakosarenko, T. Krause, A. Krüger, M. Schulz, H.G. Meyer, Opt. Eng. 50, 113204 (2011). doi:10.1117/1.3654089.

  19. J. Zmuidzinas, Appl. Opt. 42, 4989 (2003). doi:10.1364/AO.42.004989.

  20. T. May, G. Zieger, S. Anders, V. Zakosarenko, M. Starkloff, H.G. Meyer, G. Thorwirth, E. Kreysa, in Terahertz for Military and Security Applications VI, Proc. of SPIE, vol. 6949, ed. by J.O. Jensen, H.L. Cui, D.L. Woolard, R.J. Hwu (2008), Proc. of SPIE, vol. 6949, p. 69490C. doi:10.1117/12.777952.

  21. E. Heinz, T. May, G. Zieger, D. Born, S. Anders, G. Thorwirth, V. Zakosarenko, M. Schubert, T. Krause, M. Starkloff, A. Krüger, M. Schulz, F. Bauer, H.G. Meyer, J. Infrared Millim. Terahz. Waves 31, 1355–1369 (2010). doi:10.1007/ s10762-010-9716-y.

  22. T. May, E. Heinz, K. Peiselt, G. Zieger, D. Born, V. Zakosarenko, A. Bromel, S. Anders, H.G. Meyer, J. Instrum. 8, P01014 (2013). doi:10.1088/ 1748-0221/8/01/P01014.

  23. G. Rieke, Detection of Light - from the Ultraviolet to the Submillimeter, 2nd edn. (Cambridge University Press, Cambridge,2003).

  24. K.D. Irwin, M.D. Niemack, H.M. Cho, W.B. Doriese, G.C. Hilton, C.D. Reintsema, D.R. Schmidt, J.N. Ullom, L.R. Vale, Supercond. Sci. Technol. 23, 034004 (2019). doi:10.1088/0953-2048/23/3/034004.

  25. S. Anders, T. May, V. Zakosarenko, M. Starkloff, G. Zieger, H.G. Meyer, Micr. Eng. 86, 913, (2009).

  26. R. Boucher, T. May, T. Wagner, V. Zakosarenko, S. Anders, H.G. Meyer, Supercond. Sci. Technol. 19, 138 (2006).

  27. P.L. Richards, J. Appl. Phys. 76, 1 (1994). doi:10.1063/1.357128.

  28. M.J. Griffin, J.J. Bock, W.K. Gear, Appl. Opt. 41, 6543 (2002). doi:10.1364/AO.41.006543.

  29. K. Wood, A. Bideaud, S. Doyle, A. Papageorgiou, E. Pascale, S. Rowe, (2014), Proc. of 39th Int. Conf. on Infrared, Millimeter, and THz Waves (IRMMW-THz). doi:10.1109/IRMMW-THz.2014.6956014.

  30. B.A. Mazin, B. Bumble, P.K. Day, M.E. Eckart, S. Golwala, J. Zmuidzinas, F.A. Harrison, Appl. Phys. Lett. 89, 222507 (2006). doi:10.1063/1.2390664.

  31. B.A. Mazin, S.R. Meeker, M.J. Strader, P. Szypryt, D. Marsden, J.C. van Eyken, G.E. Duggan, A.B. Walter, G. Ulbricht, M. Johnson, Publications of the Astronomical Society of the Pacific 125, 1348 (2013). doi:10.1086/674013.

  32. J.A. Chervenak, K.D. Irwin, E.N. Grossman, J.M. Martinis, C.D. Reintsema, M.E. Huber, Appl. Phys. Lett. 74, 4043 (1999). doi:10.1063/1.123255.

  33. V. Zakosarenko, M. Schulz, A. Krüger, E. Heinz, S. Anders, K. Peiselt, T. May, E. Kreysa, G. Siringo, M. Starkloff, W. Esch, H.G. Meyer, Supercond. Sci. Technol. 24, 015011 (2011). doi:10.1088/0953-2048/24/1/015011.

  34. E. Heinz, V. Zakosarenko, T. May, H.G. Meyer, Supercond. Sci. Technol. 24, 045013 (2013). doi:10.1088/0953-2048/26/4/045013.

  35. Chase Research Cryogenics Ltd. http://www.chasecryogenics.com/3h-coolers.html (2013).

Download references

Acknowledgements

The authors wish to thank Gerd Hechtfischer and Christian Evers from Rohde & Schwarz GmbH & Co. KG in Munich as well as Karsten Müller from Institut für Konstruktion und Verbundbauweisen e. V. (KVB) in Chemnitz for valuable contributions. This work has been funded by the German Federal Ministry of Education and Research (BMBF) under contract number 13N12023, and by the German Federal Ministry of Economic Affairs and Energy (BMWI) and contract number KF2318502.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Heinz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heinz, E., May, T., Born, D. et al. Passive 350 GHz Video Imaging Systems for Security Applications. J Infrared Milli Terahz Waves 36, 879–895 (2015). https://doi.org/10.1007/s10762-015-0170-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-015-0170-8

Keywords

Navigation