Skip to main content
Log in

Discovery of Optically Pumped Far-infrared Laser Emissions from Formic Acid and its Isotopologues

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

An optically pumped molecular laser system with a transverse excitation scheme has been used to generate far-infrared radiation. Over 100 laser emissions with wavelengths up to 1.03 mm have been detected with this system using formic acid and several of its isotopologues. This includes ten new laser lines which are reported with their operating pressure, power, polarization with respect to the CO2 pump laser, and wavelength measured to an uncertainty of ± 0.5 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. T. Y. Chang and T. J. Bridges, “Laser action at 452, 496 and 541 μm in optically pumped CH3F,” Optics Communications, 1, pp. 423–426 (1970).

  2. M. Rosenbluh, R. J. Temkin, and K. J. Button, “Submillimeter laser wavelength tables,” Applied Optics, 15, pp. 2635–2644 (1976).

    Google Scholar 

  3. R. Beck, W. Englisch, and K. Gürs, Table of Laser Lines in Gases and Vapors, Springer Series in Optical Sciences, Volume 2, 3rd edition, D. L. MacAdam, Ed., Springer, Berlin (1980).

  4. N. G. Douglas, Millimetre and Submillimetre Wavelength Lasers: A Handbook of CW Measurements, Springer Series in Optical Sciences, Volume 61, H. Walther, Ed., Springer-Verlag, Berlin, New York (1989).

  5. D. Pereira, J. C. S. Moraes, E. M. Telles, A. Scalabrin, F. Strumia, A. Moretti, G. Carelli, and C. A. Massa, “A review of optically pumped far-infrared laser lines from methanol isotopes,” International Journal of Infrared and Millimeter Waves, 15, pp. 1–44 (1994).

    Google Scholar 

  6. S. C. Zerbetto and E. C. C. Vasconcellos, “Far infrared laser lines produced by methanol and its isotopic species: A review,” International Journal of Infrared and Millimeter Waves, 15, pp. 889–933 (1994).

    Google Scholar 

  7. M. J. Weber, Ed., Handbook of Laser Wavelengths, CRC Press, Boca Raton, Florida (1999).

  8. R. J. Wagner, A. J. Zelano, and L. H. Ngai, “New submillimeter laser lines in optically pumped gas molecules,” Optics Communications, 8, pp. 46-47 (1973).

    Google Scholar 

  9. T. K. Plant, P. D. Coleman, and T. A. deTemple, “New optically pumped far-infrared lasers,” IEEE Journal of Quantum Electronics, 9, pp. 962-963 (1973).

    Google Scholar 

  10. S. F. Dyubko, V. A. Svich, and L. D. Fesenko, “Submillimeter laser using formic acid vapor pumped with carbon dioxide laser radiation,” Soviet Journal of Quantum Electronics, 3, p. 446 (1974).

    Google Scholar 

  11. H. E. Radford, “New CW lines from a submillimeter waveguide laser,” IEEE Journal of Quantum Electronics, 11, pp. 213–214 (1975).

    Google Scholar 

  12. S. F. Dyubko, V. A. Svich, and L. D. Fesenko, “Submillimeter HCOOH, DCOOH, HCOOD, and DCOOD laser,” Soviet Physics: Technical Physics, 20, pp. 1536–1538 (1976).

  13. B. M. Landsberg, “New cw optically pumped FIR emissions in HCOOH, D2CO, and CD3Br,” Applied Physics B, 23, pp. 345–348 (1980).

    Google Scholar 

  14. D. Dangoisse and P. Glorieux, “Optically pumped continuous wave submillimeter emissions from H13COOH: Measurements and assignments,” Journal of Molecular Spectroscopy, 92, pp. 283–297 (1982).

    Google Scholar 

  15. D. Dangoisse and P. Glorieux, “The optically pumped formic acid laser,” in Reviews of Infrared and Millimeter Waves: Optically pumped far-infrared lasers, pp. 429–465, Volume 2, K. J. Button, M. Inguscio, and F. Strumia, Eds., Springer, New York, 1984.

  16. P. B. Davies, Y. Liu, and Z. Liu, “New FIR laser lines from optically pumped C2 H 3F, C2 H 3Cl, C2 H 3Br, C2 H 3CN, C2 H 5F, CH2 CF 2, HCOOH, and CH3Br,” International Journal of Infrared and Millimeter Waves, 14, pp. 2395–2400 (1993).

  17. G. Carelli, A. Moretti, D. Pereira, and F. Strumia, “Heterodyne frequency measurements of FIR laser lines around 1.2 and 1.6 THz,” IEEE Journal of Quantum Electronics, 31, pp. 144–147 (1995).

    Google Scholar 

  18. G. M. R. S. Luis, E. M. Telles, A. Scalabrin, and D. Pereira, “Observation and characterization of new FIR laser lines from formic acid,” IEEE Journal of Quantum Electronics, 34, pp. 767–769 (1998).

    Google Scholar 

  19. A. Bertolini, G. Carelli, C. A. Massa, A. Moretti, and F. Strumia, “The H13COOH optically pumped laser: New large offset FIR laser emissions and assignments,” Infrared Physics & Technology, 40, pp. 33–36 (1999).

    Google Scholar 

  20. R. C. Viscovini, J. C. S. Moraes, L. F. L. Costa, F. C. Cruz, and D. Pereira, “DCOOD optically pumped by a13 CO 2 Laser: New terahertz laser lines,” Applied Physics B, 91, pp. 517–520 (2008).

    Google Scholar 

  21. A. Deldalle, D. Dangoisse, J. P. Splingard, and J. Bellet, “Accurate measurements of CW optically pumped FIR laser lines of formic acid molecule and its isotopic species H13COOH, HCOOD and DCOOD,” Optics Communications, 22, pp. 333–336 (1977).

    Google Scholar 

  22. H. E. Radford, F. R. Petersen, D. A. Jennings, and J. A. Mucha, “Heterodyne measurements of submillimeter laser spectrometer frequencies,” IEEE Journal of Quantum Electronics, 13, pp. 92–94 (1977).

    Google Scholar 

  23. P. J. Epton, W. L. Wilson, Jr., F. K. Tittel, and T. A. Rabson, “Frequency measurement of the formic acid laser 311- μm line,” Applied Optics, 18, pp. 1704–1705 (1979).

    Google Scholar 

  24. G. E. J. Ehasz, T. M. Goyette, R. H. Giles, and W. E. Nixon, “High resolution frequency measurements of far-infrared laser lines,” IEEE Journal of Quantum Electronics, 46, pp. 474–477 (2010).

    Google Scholar 

  25. O. I. Baskakov, S. F. Dyubko, M. V. Moskienko, and L. D. Fesenko, “Identification of active transitions in a formic acid vapor laser,” Soviet Journal of Quantum Electronics, 7, pp. 445–449 (1977).

    Google Scholar 

  26. D. E. Willemot, D. Dangoisse, and J. Bellet, “Microwave spectrum of the vibrational excited states ν 6 and ν 8 of formic acid,” Journal of Molecular Spectroscopy, 77, pp. 161–168 (1979).

    Google Scholar 

  27. D. Dangoisse, E. Willemot, A. Deldalle, and J. Bellet, “Assignment of the HCOOH CW-submillimeter laser,” Optics Communications, 28, pp. 111–116 (1979).

    Google Scholar 

  28. B. M. Landsberg, D. Crocker, and R. J. Butcher, “Offset-locked CO2 waveguide laser study of formic acid: Reassessment of far-infrared laser assignments,” Journal of Molecular Spectroscopy, 92, pp. 67–76 (1982).

    Google Scholar 

  29. O. I. Baskakov, “Rotational spectrum of the excited vibrational states of DCOOH and assignment of optically pumped laser transitions,” Journal of Molecular Spectroscopy, 180, pp. 266–276 (1996).

    Google Scholar 

  30. O. I. Baskakov, “Assignment of some laser transitions in the HCOOD molecule,” Quantum Electronics, 29, pp. 226–228 (1999).

  31. O. I. Baskakov and J. Demaison, “Spectroscopic study of the ν 6=1 and ν 8=1 vibrational states of formic acid, HCOOH: New assignments of laser transitions,” Journal of Molecular Spectroscopy, 211, pp. 262–272 (2002).

    Google Scholar 

  32. O. I. Baskakov, V. M. Horneman, S. Alanko, and J. Lohilahti, “FTIR spectra of the ν 6 and ν 8 bands of13C formic acid molecule - Assignment of FIR-laser lines,” Journal of Molecular Spectroscopy, 249, pp. 60–64 (2008).

    Google Scholar 

  33. M. Jackson, A. J. Nichols, D. R. Womack, and L. R. Zink, “First laser action observed from optically pumped CH3 17OH,” IEEE Journal of Quantum Electronics, 48, pp. 303–306 (2012).

    Google Scholar 

  34. M. Jackson, H. Alves, R. Holman, R. Minton, and L. R. Zink, “New cw optically pumped far-infrared laser emissions generated with a transverse or ‘zig-zag’ pumping geometry,” Journal of Infrared, Millimeter, and Terahertz Waves, 35, pp. 282–287 (2014).

    Google Scholar 

  35. S. Ifland, M. McKnight, P. Penoyar, and M. Jackson, “New far-infrared laser emissions from optically pumped 13CHD2OH,” IEEE Journal of Quantum Electronics, 50, pp. 23–24 (2014).

    Google Scholar 

  36. M. McKnight, P. Penoyar, M. Pruett, N. Palmquist, S. Ifland, and M. Jackson, “New far-infrared laser emissions from optically pumped CH2DOH, CHD2OH, and CH3 18OH,” IEEE Journal of Quantum Electronics, 50, pp. 42–46 (2014).

    Google Scholar 

  37. G. Dodel, G. Magyar, and D. Véron, “Oscillator and superradiance characteristics of a ‘zig-zag’ pumped 66 μm D2O-laser,” Infrared Physics, 18, pp. 529–538 (1978).

    Google Scholar 

  38. H. Hirose, H. Matsuda, and S. Kon, “High power FIR NH3 laser using a folded resonator,” International Journal of Infrared and Millimeter Waves, 2, pp. 1165–1176 (1981).

  39. G. W. Chantry, Long-Wave Optics: The Science and Technology of Infrared and Near-millimetre Waves, Volumes 1 and 2, pp. 573–585, Academic Press, London (1984).

  40. K. M. Evenson, R. J. Saykally, D. A. Jennings, R. F. Curl, and J. M. Brown, “Far Infrared Laser Magnetic Resonance” in Chemical and Biochemical Applications of Lasers, pp. 95-138, Volume V, C. Bradley Moore, Ed., Academic Press, New York (1980).

  41. A. Harth, “New results about the efficiency problem of cw optically pumped FIR lasers,” Infrared Physics & Technology, 36, pp. 123-132 (1995).

    Google Scholar 

  42. L. B. Whitbourn, J. C. Macfarlane, P. A. Stimson, B. W. James, and I. S. Falconer, “An experimental study of a cw optically pumped far infrared formic acid vapour laser,” Infrared Physics, 28, pp. 7–20 (1988).

  43. M. Jackson, L. R. Zink, J. P. Towle, N. Riley, and J. M. Brown, “The rotational spectrum of the FeD radical in its X 4Δ state, measured by far-infrared laser magnetic resonance,” Journal of Chemical Physics, 130, pp. 154311-1–154311-13 (2009).

    Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation (Award No. 0910935), the Washington Space Grant Consortium (Award No. NNX10AK64H), and the Central Washington University Science Honors Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jackson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olivier, K., DeShano, B., Cain, B. et al. Discovery of Optically Pumped Far-infrared Laser Emissions from Formic Acid and its Isotopologues. J Infrared Milli Terahz Waves 35, 419–424 (2014). https://doi.org/10.1007/s10762-014-0055-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-014-0055-2

Keywords

Navigation