Skip to main content
Log in

Towards Nanoscale Biomedical Devices in Medicine: Biofunctional and Spectroscopic Characterization of Superparamagnetic Nanoparticles

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Medical interest in nanotechnology originates from a belief that nanoscale therapeutic devices can be constructed and directed towards its target inside the human body. Such nanodevices can be engineered by coupling superparamagnetic nanoparticle to biomedically active proteins. We hereby report the immobilization of a PhEst, a S-formylglutathione hydrolase from the psychrophilic P. haloplanktis TAC125 onto the gold coated surface of modified superparamagnetic core-shell nanoparticles (Fe3O4@Au). The synthesis of the nanoparticles is also reported. S-formylglutathione hydrolases constitute a family of ubiquitous enzymes which play a key role in formaldehyde detoxification both in prokaryotes and eukaryotes. PhEst was originally annotated as a putative feruloyl esterase, an enzyme that releases ferulic acid (an antioxidant reactive towards free radicals such as reactive oxygen species) from polysaccharides esters. Dynamic light scattering, scanning electron microscopy with energy dispersive X-ray spectroscopy, UV–visible absorption spectroscopy, fluorescence spectroscopy, magnetic separation technique and enzyme catalytic assay confirmed the chemical composition of the gold covered superparamagnetic nanoparticles, the binding and activity of the enzyme onto the nanoparticles. Activity data in U/ml confirmed that the immobilized enzyme is approximately 2 times more active than the free enzyme in solution. Such particles can be directed with external magnetic fields for bio-separation and focused towards a medical target for therapeutical as well as bio-sensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

DLS:

Dynamic light scattering

DPPH:

1,1-diphenyl-2picrylhydrazyl

EDS:

Energy dispersive X-ray spectroscopy

Fe3O4@Au:

Superparamagnetic core(magnetite)-shell(gold) nanoparticles

MRI:

Magnetic resonance imaging

PhEst:

Putative feruloyl esterase

pNPAc:

p-nitro phenyl acetate

ROS:

Reactive oxygen species

SEM:

Scanning electron microscopy

U/ml:

Unit/milliliter (1 unit U is the amount of enzyme that catalyses the reaction of 1 μmol of substrate per minute)

UV–visible:

Ultraviolet–visible

FWHM:

Full width at half maximum

References

  1. Klabunde KJ (2001) Nanoscale materials in chemistry. Wiley, USA

    Book  Google Scholar 

  2. Rao CNR, Muller A, Cheetham AK (2004) The chemistry of nanomaterial, vol 1. Wiley-VCH Verlag GmbH & Co KgaA, Weinheim

    Book  Google Scholar 

  3. Park H-Y, Schadt MJ, Wang L, Lim I-IS, Njoki PN, Kim SH, Jang M-Y, Luo J, Zhong C-J (2007) Fabrication of magnetic Core@Shell Fe Oxide@Au nanoparticles for interfacial bioactivity and bio-separation. Langmuir 23:9050–9056

    Article  PubMed  CAS  Google Scholar 

  4. Soudarya S, Zhang Y (2008) Use of core/shell nanoparticles for biomedical applications. Rec Pat Biomed Eng 1:34–42

    Google Scholar 

  5. Safarik I, Safarikova M (2002) Magnetic nanoparticles and biosciences. Munatsh Chem 133:737–759

    CAS  Google Scholar 

  6. Baptista P, Pereira E, Eaton P, Doria G, Miranda A, Gomes I, Quaresma P, Franco R (2008) Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 391:943–950

    Article  PubMed  CAS  Google Scholar 

  7. Imahori H, Fukuzumi S, Porphyrin S (2001) Porphyrin monolayer-modified gold clusters as photoactive materials. Adv Mater 13:1197–1199

    Article  CAS  Google Scholar 

  8. You C-C, Agasti SS, Rotello VM (2008) Isomeric control of protein recognition with amino- and dipeptide-functionalized gold nanoparticles. Chem Eur J 14:143–150

    Article  CAS  Google Scholar 

  9. Li Y, Xu X, Deng C, Yang P, Zhang X (2007) Immobilization of trypsin on superparamagnetic nanoparticles for rapid and effective proteolysis. J Proteome Res 6:3849–3855

    Article  PubMed  CAS  Google Scholar 

  10. Yang Z, Si S, Zhang C (2008) Magnetic single-enzyme nanoparticles with activity and stability. Biochem Biophys Res Commun 367:169–175

    Article  PubMed  CAS  Google Scholar 

  11. Mehta RV, Upadhyay RV, Charles SW, Ramchand CN (1997) Direct binding of protein to magnetic particles. Biotechnol Tech 11:493–496

    Article  CAS  Google Scholar 

  12. Koneracka M, Kopcansky P, Timko M, Ramchand CN, de Sequeira A, Trevan M (2002) Direct binding procedure of proteins and enzymes to fine magnetic particles. J Mol Catal B Enzym 18:13–18

    Article  CAS  Google Scholar 

  13. Brewer SH, Glomm WR, Johnson MC, Kang MK, Franzen S (2005) Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langumuir 21:9303–9307

    Article  CAS  Google Scholar 

  14. Uvdal K, Bodo P, Liedberg B (1992) L-cysteine adsorbed on gold and copper: an X-ray photoelectron spectroscopy study. J Colloid Interface Sci 149:162–173

    Article  CAS  Google Scholar 

  15. Di Felice R, Selloni A (2004) Adsorption modes of cysteine on Au (111): Thiolate, amino-thiolate, disulfide. J Chem Phys 120:4906–4914

    Article  PubMed  Google Scholar 

  16. Aurilia V, Parracino A, D’Auria S (2008) Microbial carbohydrate esterases in cold adapted environments. Gene 410:234–240

    Article  PubMed  CAS  Google Scholar 

  17. Aurilia V, Parracino A, Saviano M, Rossi M, D’Auria S (2007) The psychrophilic bacterium Pseudoalteromonas halosplanktis TAC125 possesses a gene coding for a cold-adapted feruloyl esterase activity that shares homology with esterase enzymes from γ-proteobacteria and yeast. Gene 397:51–57

    Article  PubMed  CAS  Google Scholar 

  18. Alterio V, Aurilia V, Romanelli A, Parracino A, Saviano M, D’Auria S, De Simone G (2010) Crystal structure of an S-Formylglutathione hydrolase from Pseudoromonas haloplanktis TAC125. Biopolymers 93:669–677

    PubMed  CAS  Google Scholar 

  19. Nenadis N, Zhang H-Y, Tsimidou M (2003) Structure-activity relationship of ferulic acid derivatives: effect of carbon side chain characteristic groups. J Agric Food Chem 51:1874–1879

    Article  PubMed  CAS  Google Scholar 

  20. Gnanaprakash G, Philip J, Jayakumar T, Raj B (2007) Effect of digestion time and alkali addition rate on physical properties of magnetite nanoparticles. J Phys Chem B 111:7978–7986

    Article  PubMed  CAS  Google Scholar 

  21. Lu QH, Yao KL, Xi D, Liu ZL, Luo XP, Ning Q (2006) Synthesis and characterization of composite nanoparticles comprised of gold shell and magnetic core/cores. J Magn Magn Mater 301:44–49

    Article  CAS  Google Scholar 

  22. Tronc E, Belleville P, Jolivet J-P, Livage J (1992) Transformation of ferric hydroxide into spinel by iron(II) adsorption. Langmuir 8:313–319

    Article  CAS  Google Scholar 

  23. Cullity BD (1972) Introduction to magnetic materials. Addison Wesley, San Francisco

    Google Scholar 

  24. Lesnikovich AI, Shunkevich TM, Naumenko VN, Vorobyova SA, Baykov MV (1990) Dispersity of magnetite in magnetic liquids and the interaction with a surfactant. J Magn Magn Mater 85:14–16

    Article  CAS  Google Scholar 

  25. Lattuada M, Hatton TA (2007) Functionalization of monodisperse magnetic nanoparticles. Langmuir 23:2158–2168

    Article  PubMed  CAS  Google Scholar 

  26. Lyon JL, Fleming DA, Stone MB, Schiffer P, Williams ME (2004) Synthesis of Fe Oxide Core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett 4:719–723

    Article  CAS  Google Scholar 

  27. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946

    Article  PubMed  CAS  Google Scholar 

  28. Sugimoto T, Shiba F, Sekiguchi T, Itoh H (2000) Spontaneous nucleation of monodisperse silver halide particles from homogeneous gelatin solution I: silver chloride. Colloids Surf A 164:183–203

    Article  CAS  Google Scholar 

  29. Schwertmann U, Cornell RM (1991) Iron oxides in the laboratory. VCH Verlagsgesellschaft, Weinheim, p 137

    Google Scholar 

  30. Brown KR, Walter DG, Natan MJ (2000) Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape. Chem Mater 12:306–313

    Article  CAS  Google Scholar 

  31. Wang L, Luo J, Fan Q, Suzuki M, Suzuki IS, Engelhard MH, Lin Y, Kim N, Wang JQ, Zhong C-J (2005) Monodispersed core-shell Fe3O4@Au nanoparticles. J Phys Chem B 109:21593–21601

    Article  PubMed  CAS  Google Scholar 

  32. Creighton TE (1993) Proteins: structures & molecular properties (2nd ed). pp 293–296

  33. Schmid G, Corain B (2003) Nanoparticulated gold: Syntheses, structures, electronics, and reactivities. Eur J Inorg Chem 17:3081–3098

    Article  Google Scholar 

  34. Lim JK, Kim Y, Lee SY, Joo SW (2008) Spectroscopic analysis of l-histidine adsorbed on gold and silver nanoparticle surfaces investigated by surface-enhanced Raman scattering. Spectrochimica Acta Part A 69:286–289

    Article  Google Scholar 

  35. Bain CD, Troughton EB, Tao YT, Evall J, Whitesides GM, Nuzzo RG (1989) Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J Am Chem Soc 111:321–335

    Article  CAS  Google Scholar 

  36. Ullman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554

    Article  Google Scholar 

  37. Templeton AC, Cliffel DE, Murray RW (1999) Redox and fluorophore functionalization of water-soluble, tiopronin-protected gold clusters. J Am Chem Soc 121:7081–7089

    Article  CAS  Google Scholar 

  38. Ryan JA, Overton KW, Speight ME, Oldenburg CN, Loo L, Robarge W, Franzen S, Feldheim DL (2007) Cellular uptake of gold nanoparticles passivated with BSA-SV40 large T antigen conjugates. Anal Chem 79:9150–9159

    Article  PubMed  CAS  Google Scholar 

  39. Benoit I, Asther M, Bourne Y, Navarro D, Canaan S, Lesage-Meessen L, Herweijer M, Coutinho PM, Asther M, Record E (2007) Gene overexpression and biochemical characterization of the biotechnologically relevant chlorogenic acid hydrolase from aspergillus niger. Appl Environ Microbiol 73:5624–5632

    Article  PubMed  CAS  Google Scholar 

  40. Stoller P, Jacobsen V, Sandoghdar V (2006) Measurement of the complex dielectric constant of a single gold nanoparticle. Optics Lett 31:2474–2476

    Article  CAS  Google Scholar 

  41. Lakowicz JR (2006) Principles of fluorescence spectroscopy (3rd ed). Springer

  42. Zhang J, Lakowicz JR (2007) Metal-enhanced fluorescence of an organic fluorophore using gold particles. Opt Express 15:2598–2606

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Dr. Sabato D’Auria and Vincenzo Aurialia from Institute of Protein Biochemistry, CNR, Via Pietro Castellino, 111, 80131 Napoli, Italy for providing the enzyme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen B. Petersen.

Additional information

Antonietta Parracino and Gnana Prakash Gajula contributed equally to the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parracino, A., Gajula, G.P., di Gennaro, A.K. et al. Towards Nanoscale Biomedical Devices in Medicine: Biofunctional and Spectroscopic Characterization of Superparamagnetic Nanoparticles. J Fluoresc 21, 663–672 (2011). https://doi.org/10.1007/s10895-010-0754-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0754-6

Keywords

Navigation